• Title/Summary/Keyword: distance calibration

Search Result 271, Processing Time 0.029 seconds

Camera calibration parameters estimation using perspective variation ratio of grid type line widths (격자형 선폭들의 투영변화비를 이용한 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Choi, Seong-Gu;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.30-32
    • /
    • 2004
  • With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as lens distortion, focal length, scale factor, pose, orientations, and distance. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1, 2, 3, 4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. The average scale factor tends to fluctuate with small variation and makes distance error decrease. Compared with classical methods that use stereo camera or two or three orthogonal planes, the proposed method is easy to use and flexible. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.

  • PDF

Pushing precision and accuracy of RR Lyrae variables as distance indicators

  • Bhardwaj, Anupam;Yang, Soung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.80.3-81
    • /
    • 2021
  • RR Lyrae variables are excellent distance indicators thanks to their visual magnitude-metallicity relation and well-defined Period-Luminosity Relations (PLRs) at infrared wavelengths. These population II variables together with the tip of the red giant branch provide primary calibration for the first-rung of the population II distance ladder. We will present new empirical calibration of RR Lyrae PLRs at near-infrared wavelengths using our data from the ongoing CFHT-WIRCam RR Lyrae program. We will discuss the systematic uncertainties involved in the calibration of these relations based on the latest Gaia EDR3 parallaxes and the implication for the cosmic distance scale.

  • PDF

The Camera Calibration Parameters Estimation using The Projection Variations of Line Widths (선폭들의 투영변화율을 이용한 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Moon, Sung-Young;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2372-2374
    • /
    • 2003
  • With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as focal length, scale factor, pose, orientations, and distance. But, radial lens distortion is not modeled. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1,2,3,4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.

  • PDF

Camera Calibration Method for an Automotive Safety Driving System (자동차 안전운전 보조 시스템에 응용할 수 있는 카메라 캘리브레이션 방법)

  • Park, Jong-Seop;Kim, Gi-Seok;Roh, Soo-Jang;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.621-626
    • /
    • 2015
  • This paper presents a camera calibration method in order to estimate the lane detection and inter-vehicle distance estimation system for an automotive safety driving system. In order to implement the lane detection and vision-based inter-vehicle distance estimation to the embedded navigations or black box systems, it is necessary to consider the computation time and algorithm complexity. The process of camera calibration estimates the horizon, the position of the car's hood and the lane width for extraction of region of interest (ROI) from input image sequences. The precision of the calibration method is very important to the lane detection and inter-vehicle distance estimation. The proposed calibration method consists of three main steps: 1) horizon area determination; 2) estimation of the car's hood area; and 3) estimation of initial lane width. Various experimental results show the effectiveness of the proposed method.

Extrinsic calibration using a multi-view camera (멀티뷰 카메라를 사용한 외부 카메라 보정)

  • 김기영;김세환;박종일;우운택
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we propose an extrinsic calibration method for a multi-view camera to get an optimal pose in 3D space. Conventional calibration algorithms do not guarantee the calibration accuracy at a mid/long distance because pixel errors increase as the distance between camera and pattern goes far. To compensate for the calibration errors, firstly, we apply the Tsai's algorithm to each lens so that we obtain initial extrinsic parameters Then, we estimate extrinsic parameters by using distance vectors obtained from structural cues of a multi-view camera. After we get the estimated extrinsic parameters of each lens, we carry out a non-linear optimization using the relationship between camera coordinate and world coordinate iteratively. The optimal camera parameters can be used in generating 3D panoramic virtual environment and supporting AR applications.

  • PDF

The Image Measuring System for accurate calibration-matching in objects (정밀 켈리브레이션 정합을 위한 화상측징계)

  • Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.357-358
    • /
    • 2006
  • Accurate calibration matching for maladjusted stereo cameras with calibrated pixel distance parameter is presented. The camera calibration is a necessary procedure for stereo vision-based depth computation. Intra and extra parameters should be obtain to determine the relation between image and world coordination through experiment. One difficulty is in camera alignment for parallel installation: placing two CCD arrays in a plane. No effective methods for such alignment have been presented before. Some amount of depth error caused from such non-parallel installation of cameras is inevitable. If the pixel distance parameter which is one of Intra parameter is calibrated with known points, such error can be compensated in some amount and showed the variable experiments for accurate effects.

  • PDF

alibration of Infra-red Range Finder PBS-03JN Using Piecewise Linear Function Based on 2-D Grid Error (2차원 격자 오차 데이터 기반의 선형 보정 함수들을 이용한 적외선 레인지 파인더 PBS-03JN의 보정)

  • Kim, Jin-Baek;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.922-931
    • /
    • 2011
  • An efficient calibration algorithm for mobile robot localization using infrared range finder is proposed. A calibration is important to guarantee the performance of other algorithms which use sensor data because it is pre-process. We experimentally found that the infrared range finder PBS-03JN has error characteristics depending on both distance and scan angle. After obtaining 2-D grid error characteristic data on distance and scan angle, we proposed a simple and efficient calibration algorithm with a 2-D piecewise linear function set. The performance of our proposed calibration algorithm is verified by experiments and simulation.

Calibration Method for Omnidirectional Stereo Camera with Large Baseline (큰 베이스라인을 가진 전방향 스테레오 카메라의 교정 방법)

  • Lee, Kang-San;Kang, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.10-17
    • /
    • 2010
  • This paper presents a calibration method of an omnidirectional stereo camera which may be essentially performed for distance measurement to a certain point. In the calibration of the omnidirectional stereo camera, the independent calibrations of two cameras or the calibration of a stereo camera having the small baseline is feasible applying many methods studied in the past. However, the baseline should be large enough for long distance measurement by the omnidirectional stereo camera, since it is not easy to calibrate two cameras with a large baseline at the same time. It is because a test pattern for the calibration, which is simultaneously captured by two omnidirectional cameras, appears too small in at least one of the omnidirectional cameras. It causes inaccurate calibration. In this paper, therefore, we propose a calibration method of the omnidirectional stereo camera with a large baseline and empirically verify its feasibility.

Comparative Study on Accuracy and Usefulness of Calibration Using CT T.O.D (단층촬영영상을 이용한 T.O.D Calibration의 정확성과 유용성에 관한 비교연구)

  • Seo, Jeong-Beom;Kim, Dong-Hyeon;Lee, Jeong-Beom
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • Uses a Tomographic scan image and Table Object Distance(TOD) price after measuring, uses accuracy and usability of blood vessel diameter(Vessel Diameter) measurement under comparison evaluating boil TOD Calibration. The patient who enforces Prosecuting Attorney abdomen Tomographic scan in the object the superior mesentery artery uses PACS View from abdomen fault image and from blood vessel diameter and the table measures the height until of the blood vessel. Uses Angio Catheter from Angiography(5 Fr.) and enforces is measured from PACS View the height until of the table which and the blood vessel at TOD Calibration price and the size of the superior mesentery artery inputs measures an superior mesentery artery building skill. Catheter Calibration input Agnio Catheter where uses in Angiography the size of the superior mesentery artery at Catheter Calibration price and they measure. Produced an accuracy from monitoring data and comparison evaluated. The statistical program used SPSS. TOD Calibration accuracy was 96.53%, standard deviation is 0.03829. Catheter Calibration accuracy of 92.91%, standard deviation is 0.05085. Represents a statistically significant difference(p = 0). According to age and gender was not statistically significant(p > 0.05). TOD Calibration correlation coefficient R-squared of 88.8%, Catheter Calibration of the R-squared is 75.5%. High accuracy of both methods. Through this study, CT images using the measured distance between the table and the Object, TOD Calibration accuracy higher than two Catheter Calibration was measured. TOD and Catheter Calibration represents a statistically significant difference(p = 0).

  • PDF

Calibration and Performance Test of Electro-optical Distance Meters Using a Laser Interferometer (레이저 간섭계를 이용한 광파거리측정기의 교정과 특성분석)

  • Kim Jae Wan;Eom Tae Bong;Suh Ho Suhng
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.367-374
    • /
    • 2004
  • In order for the measurement results of an electro-optical distance meter(EDM), which is widely used in surveying, to be reliable, an EDM should be calibrated. For the calibration of an EDM, we have settled a traceability chain, which connects the EDM under calibration to the definition of metre. The chain starts from the iodine stabilized He-Ne laser which realizes the definition of metre, and then connected to a stabilized laser interferometer, a standard EDM, and finally to the EDM under calibration through the baseline. We achieved the expanded calibration uncertainties of the scale and length measurement of an EDM being evaluated to be 6$\times$10$^{-6}$ and 0.2 mm, respectively. Two different calibration methods, and their results are compared.