• Title/Summary/Keyword: disposal cell

Search Result 64, Processing Time 0.029 seconds

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Cancerous Transfer Evaluation which Presumes as Prosecuting Attorney Nuclear Medicine (핵의학적 검사로 추정한 암 전이 평가)

  • Kim, Seung-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.236-245
    • /
    • 2008
  • The cancer patient who leads Bone scan and the PET study from in the nuclear medical study what is enforced with the link of early detection and the time which spreads, it will be able to accomplish a positive treatment with the data which presumes that time it researches a degree as cancer discovery initially and only difference of final period the bay it knows. The patient who receives a cancer decision it will be able to accomplish the necessary defense it will be able to delay the time in order, the maximum control the possibility of doing will be becomes the judgement. Cancer decision to initially the nuclear study and treatment it will be in parallel with effort and the investment which are constant and the schedule hour will elapse and to after difficulty some the case which comes to be negligent will be frequent and it will appear with him there to be a possibility of knowing, it will be caused by and the transfer of the cancer sell will be activity. It has a treatment objective and are to each medical treatment agency against and the medical treatment agency worker it will be able to overlook is not the portion is the private plan which needs a more positive disposal, it does.

Comparative Biodegradation of HDPE and LDPE Using an Indigenously Developed Microbial Consortium

  • Satlewal, Alok;Soni, Ravindra;Zaidi, Mgh;Shouche, Yogesh;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.477-482
    • /
    • 2008
  • A variety of bacterial strains were isolated from waste disposal sites of Uttaranchal, India, and some from artificially developed soil beds containing maleic anhydride, glucose, and small pieces of polyethylene. Primary screening of isolates was done based on their ability to utilize high- and low-density polyethylenes (HDPE/LDPE) as a primary carbon source. Thereafter, a consortium was developed using potential strains. Furthermore, a biodegradation assay was carried out in 500-ml flasks containing minimal broth (250ml) and HDPE/LDPE at 5mg/ml concentration. After incubation for two weeks, degraded samples were recovered through filtration and subsequent evaporation. Fourier transform infrared spectroscopy (FTIR) and simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) were used to analyze these samples. Results showed that consortium-treated HDPE (considered to be more inert relative to LDPE) was degraded to a greater extent (22.41% weight loss) in comparison with LDPE (21.70% weight loss), whereas, in the case of untreated samples, weight loss was more for LDPE than HDPE (4.5% and 2.5%, respectively) at $400^{\circ}C$. Therefore, this study suggests that polyethylene could be degraded by utilizing microbial consortia in an eco-friendly manner.

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.

Isolation of Cadmium-Tolerant Bacteria and Characterization of Cadmium Accumulation into the Bacteria Cell (카드뮴 내성균(耐性菌)의 분리(分離), 동정(同定)및 균체내(菌體內) 카드뮴 축적(蓄積) 특성(特性))

  • Cho, Ju-Sik;Han, Mun-Gyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 1992
  • Of the cadmium-tolerant 162 bacterial strains isolated from soils, river waters or active sludges of waste-water disposal plants in the Gyeongnam province a strain C1, which showed considerably higher growth rate in the agar plate containing 2000 ppm than any other strains isolated, was identified as a Pseudomonas putida or its similar strain when analyzed by taxonomical characteristics. Optimum pH and temperature for the growth of the P, putida were 7.0 and $30^{\circ}C$, respectively. This strain was resistant to antibiotics(ampicillin, chloramphenicol and streptomycin), and heavy metals(lithium, cupper, lead and zinc). This strain utilized salicylate, naphthalene or xylene as a sole carbon source. The rate of cadmium accumulation in P. putida cell was enhanced at low concentration of Cd in the growth media. The maximum cadmium absorption by this strain grown in 1 and l0ppm of Cd was respectively 78% and 60% 24 hrs after culture, but in 100 ppm Cd, 40% 48 hrs after culture. Addition of a non-ionic surfactant Triton X-100(0.1%) to the medium enhanced the accumulation of cadmium in the P. putida up to approximately 37%.

  • PDF

Evaluation of Antimicrobial Activity of Allyl Isothiocyanate (AITC) Adsorbed in Oyster Shell on Food-borne Bacteria

  • Han, Jung-Ho;Ahmed, Raju;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • Oyster shells are a waste product from mariculture that creates a major disposal problem in coastal regions of southeast Korea. To make practical use of unused oyster shells, calcined oyster shell (COS) collected from a local company was allowed to adsorb AITC (allyl isothiocyanate), and then tested the powder's ability to inhibit the growth of some potential food borne disease-causing bacteria. COS powder showed bacteriostatic effect that inhibited cell growth of Escherichia coli, Staphylococcus aureus and Salmonella typhimurium from 3 to 5 log10 CFU/mL at concentrations around 1%. The MIC of pure AITC was found as 1 mg/mL, 0.8 mg/mL and 0.7 mg/mL for Escherichia coli, Staphylococcus aureus and Salmonella typhimurium, respectively. The calcined powder adsorbed about 225 mg of AITC per gram of shell, indicating porous material was created by calcination. FTIR data confirmed the adsorption of AITC by COS. Characterization of particle data showed very fine particle size and highly convoluted surface. AITC adsorbed calcined oyster shell (ACOS) completely inhibited bacterial cell at 1% concentration. ACOS showed better antibacterial effect than COS, indicating synergistic effect of AITC and calcined oyster shell powder on bacteria.

Crevice Corrosion Evaluation of Cold Sprayed Copper (저온분사코팅구리의 틈새부식 특성 평가)

  • Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.247-260
    • /
    • 2010
  • The developement of a HLW disposal canister is under way in KAERI using Cold Spray Coating technique. To estimate corrosion behavior of a cold sprayed copper, a creivice corrosion test was conducted at Southwest Research Institute(SWRI) in the United State. For the measurement of repassivation potential needed for crevice corrosion, three methods such as (1) ASTM G61-86 : Cyclic Potentiodynamic Polarization Measurements, (2) Potentiodynamic Polarization plus intermediate Potentiostatic Hold method, and (3) ASTM G192-08 (THE method) : Potentiodynamic- Galvanostatic-Potentiostatic Method, were introduced in this report. In the crevice corrosion test, the occurrence of corrosion at crevice area was optically determined and the repassivation potentials were checked for three kind of copper specimens in a simulated KURT underground water, using a crevice former dictated in ASTM G61-86. The applied electrochemical test techniques were cyclic polarization, potentiostatic polarization, and electrochemical impedance spectroscopy. As a result of crevice corrosion tests, every copper specimens including cold sprayed one did not show any corrosion figure on crevice areas. And the open-cell voltage, at which corrosion reaction initiates, was influenced by the purity of copper, but not their manufacturing method in this experiment. Therefore, it was convinced that there is no crevice corrosion for the cold sprayed copper in KURT underground environment.

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.

The Effects of Environmental Factors on Biodegradability Test for Lubricant Products (환경인자가 윤활제품의 생분해도 시험에 미치는 영향)

  • Cho, Eun-Hye;Park, Keun-Hyoung;Han, Seung-Ock;Kim, Eui-Yong;Ryu, Jae-Sang;Jang, Sun-Bok;Lee, Un-Gi;Chae, Hee-Jeong
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.285-290
    • /
    • 2008
  • Various methods (OECD 301B, ISO 9439 and ASTM 5864) for biodegradability test of lubricants were reviewed, and a standard procedure was developed. Most lubrication products are released in rivers or sea then is degraded by microbial action in aerobic condition. Most international method are based on $CO_2$ evolution test. Inoculum obtained from a sewage disposal plant and test compound are cultivated in a mineral medium. Organic carbon of the test compound is degraded and oxidized through the enzymatic actions of inoculum, and ultimately mineralized to carbon dioxide. Biodegradability test conditions of lubricant oils were optimized. The highest biodegradability was achieved when the same medium as in ASTM 5864 and inoculum concentration of $10^4{\sim}10^5$ cell/L were used. The optimum standard materials were selected as aniline and sodium acetate. Additionally the effects of inoculum type on microbial growth and biodegradability were examined. Finally the standard operating procedure (SOP) for biodegradability test method was proposed.

Diffusivities of Co-60 through the Clay with varying bulk density. (점토층의 밀도 변화에 따른 Co-60의 확산속도)

  • Suk, Tae-Won;Kim, Hong-Tae;Mho, Se-Young
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.4
    • /
    • pp.265-274
    • /
    • 1995
  • Diffusivity of ions of radioactive species is an important factor for designing radwaste repositories. Clay minerals are used as a backfill material. In this study, diffusion of Co-60 ions through the bentonite having various densities has been studied, using a diffusion cell. The measured diffusivities of Co-60 ions decreased as the density of bentonite increased. The diffusivity of Co-60 ion decreased from $8.79{\times}10^{11}m^2/s$ to $6.82{\times}10-13m^2/s$ as the clay dry bulk density increased from 0.41 to 2.03g/cm3. The diffusivity of Co ion was larger than that of Sr ion at low density, but the diffusivity of Co ion decreased rapidly as the density of clay increased and became smaller than that of Cs ion at high density. This phenomenon is thought to be caused by the rapid decrease of the fraction of mobile cation since the chemical combination of Co ions with oxygen or oxide on clay surface and the entrance of Co ions into the crystal structure of clay increase as the clay density increases. This change should be considered especially in designing the clay back fill for low and intermediate radwaste disposal facilities.

  • PDF