• Title/Summary/Keyword: display panel

Search Result 1,763, Processing Time 0.031 seconds

Design and characterization of conductive transparent filter using [TiO2|Ti|Ag|TiO2] multilayer ([TiO2|Ti|Ag|TiO2] 다층구조를 이용한 전도성 투과필터의 설계 및 특성분석)

  • Lee, Seung-Hyu;Lee, Jang-Hoon;Hwangbo, Chang-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.363-369
    • /
    • 2002
  • We have designed conductive transparent filters using a low-emissivity coating such as [dielectric|Ag|dielectric] for display applications. The design is the repetition of [$TiO_{2}$|Ti|Ag |$TiO_{2}$] to increase the transmittance in the visible and decrease the transmittance in the near IR. The conductive transparent filters are deposited by a radio frequency(RF) magnetron sputtering system. The optical, structural and electrical properties of the filters were investigated and the optical spectra are compared with simulated spectra. The thickness of the deposited Ag films is above 13 ㎚ to increase the conductivity and that of $TiO_{2}$ films is 24 ㎚ to increase the transmittance in the visible range. Ti blockers are employed to prevent the Ag films from being oxidized by an oxygen gas during the reactive sputtering process. Also, it is shown that the thicker Ti film is necessary as the period increases. Finally, a filter with repetition of the basic structure three times shows the better cut-off near infrared(NIR) and the sheet resistance as low as 2Ω/□ which is enough to shield an unnecessary electromagnetic waves for a display panel.

이종 타겟을 지닌 대향 타겟 스퍼터링 방법으로 제작된 AZO 박막의 광학적·전기적 특성에 관한 연구

  • ;Seo, Seong-Bo;Bae, Gang;Kim, Dong-Yeong;Choe, Myeong-Gyu;Kim, Hwa-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.337-337
    • /
    • 2014
  • 투명 전도성 산화물(transparent conductive oxide: TCO) 박막은 높은 투과율과 낮은 비저항 덕분에 LCD (liquid crystal display), PDP (plasma display panel), OLED (organic light emitting display) 등 평판 디스플레이에 널리 사용되고 있다. 현재 양산되고 있는 ITO (indium tin oxide)는 90% 이상의 높은 투과율과 우수한 전도성으로 인해 TCO 박막 가운데서 디스플레이 산업에서 가장 널리 쓰이고 있다. 그런데, ITO의 인듐산화물에 의한 간질성 폐렴(interstitial pneumonia)의 유발 위험이 있다든가, 인듐의 매장량이 적어 원자재 가격이 비싼 단점도 가지고 있다. 이에 최근 ITO를 대체할 수 있는 TCO물질로 많은 연구가 이루어지고 있는데, 특히 AZO (aluminum-doped zinc oxide)는 그 중 대표적인 대체물질로서 독성이 없고 가격도 저렴하여 많은 관심이 증폭되고 있다. 현재 AZO는 sol-gel 방법이나 CVD (chemical vapor deposition) 또는 스퍼터링 방법 등으로 증착되고 있다. 본 연구에서는 두 개의 이종타겟(hetero target)을 장착한 대향 타겟 스퍼터링(facing target sputtering: FTS) 장치를 사용하여 AZO 박막을 제작한다. 기존의 여러 증착법과 달리, FTS 장치는 두 타겟 사이에 형성되는 플라즈마 내의 ${\gamma}$-전자를 구속하게 되며, 낮은 가스 압력에서 고밀도 플라즈마가 생성되어 빠른 증착 속도와 안정적인 방전을 유지한 상태에서 박막을 증착할 수가 있다. 또한 기판과 플라즈마가 이격되어 있어 높은 에너지를 갖는 입자들의 기판 충돌을 억제할 수 있는 장점들을 갖는다. 이종 타겟인 ZnO와 Al2O3를 사용하고 각 타겟에 인가되는 파워 변화를 통해 AZO 박막 내 Al2O3의 성분비를 조절하였다. ZnO 타겟의 증착 파워를 100 W로 고정할 경우, Al2O3 타겟의 증착 파워가 (50~90) W으로 실험을 하였으며, Al2O3 타겟의 증착 파워가 70 W일 때 AZO 박막의 Al2O3 성분비는 2.02 wt.%이며 박막의 비저항 값은 $5{\times}10^{-4}{\Omega}{\cdot}cm$로 최소값을 보였다. 이러한 비저항의 변화는 파워에 따른 AZO 박막의 캐리어 이동도(Hall mobility)와 캐리어의 농도(Carrier Concentration)의 변화와 밀접한 관계가 있음을 보여주며, 특히 AZO 박막의 캐리어 농도와 캐리어 이동도는 AZO 박막을 형성하고 있는 결정립의 크기에 의존하는 것이 X-선 회절 패턴과 SEM으로부터 확인되었다. 특히, 본 연구에서는 두 개의 이종 타겟(hetero target) Al2O3와 ZnO를 장착하고 각각의 파워를 변화시켜 도핑 량을 조절할 수는 대향 타겟 스퍼터링(FTS: facing-target sputtering) 방법을 이용하여 제작된 AZO 박막에 대해 전기적, 광학적 및 구조적 특성을 분석하고 ITO의 대체물로서의 가능성을 검토하고자 한다.

  • PDF

A DC-DC Converter Design for OLED Display Module (OLED Display Module용 DC-DC 변환기 설계)

  • Lee, Tae-Yeong;Park, Jeong-Hun;Kim, Jeong-Hoon;Kim, Tae-Hoon;Vu, Cao Tuan;Kim, Jeong-Ho;Ban, Hyeong-Jin;Yang, Gweon;Kim, Hyoung-Gon;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.517-526
    • /
    • 2008
  • A one-chip DC-DC converter circuit for OLED(Organic Light-Emitting Diode) display module of automotive clusters is newly proposed. OLED panel driving voltage circuit, which is a charge-pump type, has improved characteristics in miniaturization, low cost and EMI(Electro-Magnetic Interference) compared with DC-DC converter of PWM(Pulse Width Modulator) type. By using bulk-potential biasing circuit, charge loss due to parasitic PNP BJT formed in charge pumping, is prevented. In addition, the current dissipation in start-up circuit of band-gap reference voltage generator is reduced by 42% and the layout area of ring oscillator is reduced by using a logic voltage VLP in ring oscillator circuit using VDD supply voltage. The driving current of VDD, OLED driving voltage, is over 40mA, which is required in OLED panels. The test chip is being manufactured using $0.25{\mu}m$ high-voltage process and the layout area is $477{\mu}m{\times}653{\mu}m$.

A Study on Micro-Electrode Pattern of Repair Process Using Electrohydrodynamic Printing System (전기수력학 프린팅 기술을 이용한 미세전극 패턴의 리페어 공정 적용에 관한 연구)

  • Yang, Young-Jin;Kim, Soo-Wan;Kim, Hyun-Bum;Yang, Hyung-Chan;Lim, Jong-Hwan;Choi, Kyung-Hyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.232-240
    • /
    • 2016
  • Recently, various research studies have been conducted and many are in progress for the suitable alternative materials for ITO based touch screen panel (TSP) due to limitations in size and flexibility. Various researches from all over the world have been attempted to fabricate the fine electrode less than $5{\mu}m$ for the rapid developing of display technology. Research is also being carried out in metal mesh methods using the existing technologies and alternative materials at commercial level. However, by using the existing technologies certain discrepancies are observed like low transparency and low yield which also results in the distortion of patterns. For repairing the damaged pattern, the conventional laser CVD technique has also been used but there are some challenges observed in CVD technique like achieving a stable fine electrode of $10{\mu}m$ or less and avoiding the formation of satellite drops. To overcome these issues, a new printing process named Electrohydrodynamic (EHD) printing, has been introduced by which $5{\mu}m$ fine patterns can be printed in one step. This EHDA printing technique has been applied to print very fine electrodes of $5{\mu}m$ or less by using conductive inks of various viscosities. This study also presents the optimized process parameters for printing $5{\mu}m$ fine electrode patterns during experiments by controlling the applied voltage and supply flow rate. The $5{\mu}m$ repair electrodes were fabricated for repairing $50{\mu}m$ shorted electrode samples.

Comparative Study of Subjective Mental Workload Assessment Techniques for the Evaluation of ITS-oriented Human-Machine Interface Systems (지능형 교통체계 기반 인간-기계 인터페이스 시스템 평가를 위한 정신적부하 측정방법의 비교 연구)

  • Cha, Doo-Won;Park, Peom
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.3
    • /
    • pp.45-58
    • /
    • 2001
  • Subjective mental workload assessment technique becomes a standard human factors and human-machine interface evaluation tool for the evaluation of ITS(Intelligent Transport Systems)-oriented information systems as well as the drivers visual activity analysis, physiological indices(GSR, EEG, ECG, etc.), secondary task performance, reaction time. vehicle control parameters(speed, steering behavior, accelerator control) that are widely applied for transportation and vehicle systems to evaluate the safety, to decide the system or design alternatives, and to establish the design guidelines. This paper reviewed and compared the most globally employed four mental workload assessment techniques that have been designed for the use of various human-machine systems and ITS-oriented in-vehicle information systems. NASA-TLX(National Aeronautics and Space Administration-Task Load Index). SWAT(Subjective Workload Assessment Technique), MCH(Modified Cooper-Harper) scale, and recently developed RNASA-TLX(Revision of NASA-TH) were compared in terms of sensitivity and subjective evaluations to derive the human-machine interface evaluation guidelines for the application of ITS-oriented in-vehicle information systems. Then, experiment results supported that RNASA-TLX is the prospective tool for the mental workload assessment of ITS-oriented in-vehicle information systems.

  • PDF

A Printing Process for Source/Drain Electrodes of OTFT Array by using Surface Energy Difference of PVP (Poly 4-vinylphenol) Gate Dielectric (PVP(Poly 4-vinylphenol) 게이트 유전체의 표면에너지 차이를 이용한 유기박막트랜지스터 어레이의 소스/드레인 전극 인쇄공정)

  • Choi, Jae-Cheol;Song, Chung-Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.3
    • /
    • pp.7-11
    • /
    • 2011
  • In this paper, we proposed a simple and high-yield printing process for source and drain electrodes of organic thin film transistor (OTFT). The surface energy of PVP (poly 4-vinylphenol) gate dielectric was decreased from 56 $mJ/m^2$ to 45 $mJ/m^2$ by adding fluoride of 3000ppm into it. Meanwhile the surface energy of source and drain (S/D) electrodes area on the PVP was increased to 87 $mJ/m^2$ by treating the areas, which was patterned by photolithography, with oxygen plasma, maximizing the surface energy difference from the other areas. A conductive polymer, G-PEDOT:PSS, was deposited on the S/D electrode areas by brushing painting process. With such a simple process we could obtain a high yield of above 90 % in $16{\times}16$ arrays of OTFTs. The performance of OTFTs with the fluoride-added PVP was similar to that of OTFTs with the ordinary PVP without fluoride, generating the mobility of 0.1 $cm^2/V.sec$, which was sufficient enough to drive electrophoretic display (EPD) sheet. The EPD panel employing the OTFT-backpane successfully demonstrated to display some patterns on it.

Multi-Line Driving Technology on PM OLED using Graph theory and Correlation (그래프 이론과 상관성을 이용한 PM OLED 다중선 구동 기술)

  • Lee, Gil-Jae;Lee, Chang-Hoon;Jeong, Je-Chang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.62-72
    • /
    • 2010
  • PM OLED is used in many applications as one of the display for the next generation. The most essential problems are the power dissipation and the short life time in applying PM OLED into a commercial application. Many efforts are made in developing the panel and in improving the circuit for expanding the current market wider. The life time in PM OLED is expanded by lessening the power dissipation of the circuit for the magnitude of the driving current is lowered. It is possible to minimize the power dissipation from improving the driving technology. The classical technology, Row-to-Row driving, is that row is selected one by one while applying the column current input individually. The multi-line driving is a new technology which is to select multiple rows simultaneously while applying the column current as a whole. However, the solution of the multi-line driving is NP-complete problem. The efficiency is dependant on the sort of picture and the driving condition. This paper presents the new efficient multi-line driving which is that the multiple lines are selected by applying column current together after grouping the simultaneous driving group applying the gnew efficient muthe coi-line dr coefficient. Bengrouping the several rows which has the higher coi-line dr coefficient, the more efficient driving is realized to present the high quality image and to lessen the power dissipation and to stretch the life time in the PM OLED.

A Study on the Optimal Design of Soft X-ray Ionizer using the Monte Carlo N-Particle Extended Code (Monte Carlo N-Particle Extended 코드를 이용한 연X선 정전기제거장치의 최적설계에 관한 연구)

  • Jeong, Phil hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.34-37
    • /
    • 2017
  • In recent emerging industry, Display field becomes bigger and bigger, and also semiconductor technology becomes high density integration. In Flat Panel Display, there is an issue that electrostatic phenomenon results in fine dust adsorption as electrostatic capacity increases due to bigger size. Destruction of high integrated circuit and pattern deterioration occur in semiconductor and this causes the problem of weakening of thermal resistance. In order to solve this sort of electrostatic failure in this process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. X-ray Generating efficiency has an effect on soft X-ray Ionizer affects neutralizing performance. There exist variable factors such as type of anode, thickness, tube voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was measured according to target material thickness using MCNPX under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W), Gold(Au), Silver(Ag). At the result, Gold(Au) shows optimum efficiency. In Tube voltage 5 keV, optimal target thickness is $0.05{\mu}m$ and Largest energy of Light flux appears $2.22{\times}10^8$ x-ray flux. In Tube voltage 10 keV, optimal target Thickness is $0.18{\mu}m$ and Largest energy of Light flux appears $1.97{\times}10^9$ x-ray flux. In Tube voltage 15 keV, optimal target Thickness is $0.29{\mu}m$ and Largest energy of Light flux appears $4.59{\times}10^9$ x-ray flux.

RRP Loading Patterns and Standard Dimensions for Block Pattern in Membership Wholesale Clubs (Membership Wholesale Club에서의 RRP 적재패턴 및 블록패턴 표준규격에 관한 연구)

  • Jung, Sung-Tae;Han, Kyu-Chul
    • Journal of Distribution Science
    • /
    • v.13 no.7
    • /
    • pp.41-51
    • /
    • 2015
  • Purpose - This study analyzes loading efficiency by loading pattern for package standardization and reduction of logistics costs, along with the creation of revenue for the revenue review panel (RRP) of Membership Wholesale Clubs (MWC). The study aims to identify standard dimensions that can help improve the compatibility of the pallets related to display patterns preferred by the MWC and thereby explore ways to enhance logistics efficiency between manufacturers and retailers through standardization. Research design, data, and methodology - The study investigates and analyzes the current status based on actual case examples, i.e., manufacturer A and Korea's MWC (A company, B company, and C company), and thus devises improvement measures. To achieve this, the case of manufacturer A delivering to MWC was examined, and the actual pallet display patterns for each MWC were investigated by visiting each distribution site. In this study, TOPS (Total Optimization Packaging Software, USA) was used as the tool for pallet loading efficiency simulations the maximum allowable dimension was set to 0.0mm to prevent the pallet from falling outside the parameters, and the loading efficiency was analyzed with the pallet area. In other words, the study focused on dimensions (length x width x height) according to the research purpose and thereby deduced results. Results - The analysis of pallet loading patterns showed that the most preferred loading patterns for loading efficiency according to product specification, such as pinwheel, brick, and block patterns, were used in the case of the general distribution products, but the products were configured with block patterns in most cases when delivered to MWCs. The loading efficiency by loading pattern was analyzed with respect to 104 nationally listed standard dimensions. Meanwhile, No.51 (330 × 220mm) of KS T 1002 (1,100 × 1,100mm) was found to be the dimension that could bring about an improved loading efficiency, over 90.0% simultaneously in both the T-11 and T-12 pallet systems in a loading pattern configuration with the block pattern only, and the loading efficiency simulation results also confirmed this as the standard dimension that can be commonly applied to both the T-11 pallet (90.0%) and the T-12 pallet (90.7%) systems. Conclusions - The loading efficiency simulation results by loading pattern were analyzed: For the T-11 pallet system, 17 standard dimension sizes displayed the loading efficiency of 90.0% or more as block patterns, and the loading capacity was an average of 99.0%. For the T-12 pallet system, 35 standard dimension sizes displayed the loading efficiency of more than 90% as block patterns (the average loading efficiency of 98.6%). Accordingly, this study proposes that the standard dimensions of 17 sizes with the average loading efficiency of 99.0% should be applied in the use of the T-11 pallet system, and those of 35 sizes with the average loading efficiency of 98.6% should be reviewed and applied in the use of the T-12 pallet system.

Preparation of Borosilicate Foamed Glass Body with Sound Absorption Characteristics by the Recycling Waste Liquid Crystal Display Glass (폐 LCD 유리를 이용한 흡음특성을 갖는 붕규산유리발포체 제조)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.612-619
    • /
    • 2016
  • In this research, an alumino-borosilicate foamed glass with sound absorption property was prepared using the waste borosilicate glass obtained from the recycling process of waste liquid crystal display (LCD) panel. A 100 g of pulverized waste borosilicate glass with the particle size of under 325 mesh, was mixed with 0.3 g (wt/wt) of graphite, each 1.5 g (wt/wt) of $Na_2CO_3$, $Na_2SO_4$ and $CaCO_3$ as a foaming agent, and 6.0 g (wt/wt) of $H_3BO_3$ and 3.0 g (wt/wt) of $Al_2O_3$ as a pore control agent. Following mixture was under the foaming process for 20 minutes at a foaming temperature of $950^{\circ}C$. The result yielded the foaming agent with 45% of the opened porosity and 0.5-0.7 of the sound absorbing coefficient. This alumino-borosilicate foamed glass with the sound absorption property showed excellent physical and mechanical properties such as density of $0.21g/cm^3$, bending strength of $55N/cm^2$ and compression strength of $298N/cm^2$ which can be ideally used as sound absorption materials with heat-resisting and chemical-resisting property.