• Title/Summary/Keyword: displacement reaction

Search Result 287, Processing Time 0.021 seconds

Facile Synthesis of Vertically Aligned CdTe-Si Nanostructures with High Density (수직배양된 고집적 CdTe-Si 나노구조체의 제조방법)

  • Im, Jinho;Hwang, Sung-hwan;Jung, Hyunsung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.185-191
    • /
    • 2017
  • Cadmium compounds with one dimension (1D) nanostructures have attracted attention for their excellent electrical and optical properties. In this study, vertically aligned CdTe-Si nanostructures with high density were synthesized by several simple chemical reactions. First, l D Te nanostructures were synthesized by silver assisted chemical Si wafer etching followed by a galvanic displacement reaction of the etched Si nanowires. Nanowire length was controlled from 1 to $25{\mu}m$ by adjusting etching time. The Si nanowire galvanic displacement reaction in $HTeO_2{^+}$ electrolyte created hybrid 1D Te-branched Si nanostructures. The sequential topochemical reaction resulted in $Ag_2Te-Si$ nanostructures, and the cation exchange reaction with the hybrid 1D Te-branched Si nanostructures resulted in CdTe-Si nanostructures. Wet chemical processes including metal assisted etching, galvanic displacement, topochemical and cation exchange reactions are proposed as simple routes to fabricate large scale, vertically aligned CdTe-Si hybrid nanostructures with high density.

Bamboo-like Te Nanotubes with Tailored Dimensions Synthesized from Segmental NiFe Nanowires as Sacrificial Templates

  • Suh, Hoyoung;Jung, Hyun Sung;Myung, Nosang V.;Hong, Kimin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3227-3231
    • /
    • 2014
  • Bamboo-like Te nanotubes were synthesized via the galvanic displacement reaction of NiFe nanowires with Ni-rich and Fe-rich segments. The thick and thin components of the synthesized Te nanotubes were converted from the Ni-rich and Fe-rich segments in the NiFe nanowires respectively. The dimensions of the Te nanotubes were controlled by employing sacrificial NiFe nanowires with tailored dimensions as the template for the galvanic displacement reaction. The segment lengths of the Te nanotubes were found to be dependent on those of the sacrificial NiFe nanowires. The galvanic displacement reaction was characterized by analyzing the open circuit potential and the corrosion resistance.

A Study on Behavior of the Earth Retaining Structure by Field Measurement and Numerical Analysis (현장계측과 수치해석에 의한 흙막이구조물의 거동 비교분석)

  • Wo, Jongtae
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.286-295
    • /
    • 2017
  • In this study, it is compared various coefficients of subgrade reaction for application of numerical analysis based on measured data by using various theories and empirical formula. The ratio of the maximum and minimum value is 6.80 at the top of wall but it is 1.06 at the maximum displacement point depends on change of calculated coefficient of subgrade reaction. The data of displacement were generally similar considering an increment of a coefficient of subgrade reaction. And the results of comparison of the displacement at the maximum displacement point by numerical analysis and measured data show similar displacement shape.

Effect on Coefficient of Subgrade Reaction on Dynamic responses of Buried Pipelines (지중매설관로의 동적응답에 미치는 지반반력계수의 영향)

  • Jeong, Jin-Ho;Lee, Kwang-Yeol;Kang, Hyo-Sub
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • We have examined the effect of values of subgrade reaction coefficient on the dynamic responses(displacement and strain responses) of the buried concrete pipeline of which the end boundary condition is the fixed ends. We have carried out the dynamic analysis of mode superposition method with representative values of coefficient of subgrade reaction applicable to the classified rock masses. We have found that the effect of subgrade reaction coefficient on the dynamic responses of the pipeline appears noticeable for the seismic waves having relatively high frequency and low apparent propagation velocity.

Direct kinematic method for exactly constructing influence lines of forces of statically indeterminate structures

  • Yang, Dixiong;Chen, Guohai;Du, Zongliang
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.793-807
    • /
    • 2015
  • Constructing the influence lines of forces of statically indeterminate structures is a traditional issue in structural engineering and mechanics. However, the existing kinematic method for establishing these force influence lines is an indirect or mixed approach by combining the force method with the theorem of reciprocal displacements, which is yet inconsistent with the kinematic method for statically determinate structure. This paper proposes the direct kinematic method in conjunction with the load-displacement differential relation for exactly constructing influence lines of reaction and internal forces of indeterminate structures. Firstly, through applying the principle of virtual displacement, the formula for influence lines of reaction and internal forces of indeterminate structure via direct kinematic method is derived based on the released structure. Then, a computational approach with a clear concept and unified procedure as well as wide applicability based on the load-displacement differential relation of beam is suggested to achieve conveniently the closed-form expression of force influence lines, and exactly draw them. Finally, three representative examples for constructing force influence lines of statically indeterminate beams and frame illustrate the superiority of the proposed method.

Facile Coating of Poly(3,4-ethylenedioxythiophene) on Manganese Dioxide by Galvanic Displacement Reaction and Its Electrochemical Properties for Electrochemical Capacitors

  • Kim, Kwang-Heon;Kim, Ji-Young;Kim, Kwang-Bum
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2529-2534
    • /
    • 2012
  • Poly(3,4-ethylenedioxythiophene) coated Manganese Dioxide (PEDOT/$MnO_2$) composite electrode was fabricated by simply immersing the $MnO_2$ electrode in an acidic aqueous solution containing 3,4-ethylenedioxythiophene (EDOT) monomers. Analysis of open-circuit potential of the $MnO_2$ electrode in the solution indicates the reduction of outer surface of $MnO_2$ to dissolved $Mn^{2+}$ ions and simultaneously oxidation of EDOT monomer to PEDOT on the $MnO_2$ surface to form a PEDOT shell via a galvanic displacement reaction. Analysis of cyclic voltammograms and specific capacitance of the PEDOT/$MnO_2$, conductive carbon added $MnO_2$ and conductive carbon added PEDOT/$MnO_2$ electrodes suggests that the conductive carbon acted mainly to provide a continuous conducting path in the electrode to improve the rate capability and the PEDOT layer on $MnO_2$ acts to increase the active reaction site of $MnO_2$.

Numerical prediction of stress and displacement of ageing concrete dam due to alkali-aggregate and thermal chemical reaction

  • Azizan, Nik Zainab Nik;Mandal, Angshuman;Majid, Taksiah A.;Maity, Damodar;Nazri, Fadzli Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.793-802
    • /
    • 2017
  • The damage of concrete due to the expansion of alkali-aggregate reaction (AAR) and thermal-chemical reactions affecting the strength of concrete is studied. The empirical equations for the variations of expansion of AAR, compressive strength and degradation of the modulus of elasticity with time, and compressive strength with degradation of the modulus of elasticity are proposed by analysing numerous experimental data. It is revealed that the expansion of AAR and compressive strength increase with time. The proposed combination of the time variations of chemical and mechanical parameters provides a satisfactory prediction of the concrete strength. Seismic analysis of the aged Koyna dam is conceded for two different long-term experimental data of concrete incorporating the proposed AAR based properties. The responses of aged Koyna dam reveal that the crest displacement of the Koyna dam significantly increases with time while the contour plots show that major principal stress at neck level reduces with time. As the modulus of elasticity decreases with ages the stress generated in the concrete structure get reduces. On the other hand with lesser value of modulus of elasticity the structure becomes more flexible and the crest displacement becomes very high that cause the seismic safety of the dam reduce.

Settlement Characteristics of the Reinforced Railroad Roadbed with Crushed Stones Under a Simulated Train Loading (모사 열차하중 재하에 따른 쇄석강화노반의 침하특성)

  • Hwang, Seon-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.5-13
    • /
    • 2004
  • Conventional railroad roadbeds constructed with soils can easily deteriorate with time due to the increase of repeated traffic loading, increase of train speed, built-up of ground water on the roadbed and decrease of permeability in the roadbed layer, etc. In this study, performance of reinforced railroad roadbeds with the crushed stones was investigated through the real scale roadbed tests and numerical analysis. It was found that the reinforced roadbed with crushed stone had less elastic and plastic vertical displacement(settlement) than general soil roadbed regardless of the number of loading cycles. It was also found through the actual testing that for the roadbed with the same thickness, the displacement of reinforced roadbed decreases with the increase of subgrade reaction modulus. The settlement of reinforced roadbed with the same subgrade reaction modulus also decreases with the increase of thickness of the reinforced roadbed. However, the subgrade reaction modulus is a more important factor to the total plastic displacement of the track than the thickness of the crushed stone roadbed.

A Study on the Synthesis of Hydrocarbon by Fisher-Tropsch Synthesis over Cobalt Catalysts with High Surface Area Support (비 표면적 큰 코발트계 담지촉매를 사용한 피셔-트롭스 반응에 의한 탄화수소의 제조에 관한 연구)

  • Kim, Chul-Ung;Kim, You-Sung;Jeong, Soon-Yong;Jeong, Kwang-Eun;Chae, Ho-Jeong;Lee, Kwan-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.279-287
    • /
    • 2009
  • Fisher-Tropsch synthesis for the production of hydrocarbon from syngas was investigated on 20% cobalt-based catalysts (20% Co/HSA, 20% Co/Si-MMS), which were prepared by home-made supports with high surface areas such as high surface alumina (HSA) and silica mesopores molecular sieve (Si-MMS). In the gas phase reaction by syngas only, 20% Co/Si-MMS catalyst was shown in higher CO conversion and lower carbon dioxide formation than 20% Co/HSA, whereas the olefin selectivity was higher in 20% Co/HSA than in 20% Co/Si-MMS. In the effect of n-hexane added in syngas, the selectivities of $C_{5+}$ and olefin were increased by comparing the supercritical phase reaction with the gas phase reaction in addition to reduce unexpected methane and carbon dioxide.

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF