• 제목/요약/키워드: displacement predicting

검색결과 204건 처리시간 0.023초

A hybrid deep learning model for predicting the residual displacement spectra under near-fault ground motions

  • Mingkang Wei;Chenghao Song;Xiaobin Hu
    • Earthquakes and Structures
    • /
    • 제25권1호
    • /
    • pp.15-26
    • /
    • 2023
  • It is of great importance to assess the residual displacement demand in the performance-based seismic design. In this paper, a hybrid deep learning model for predicting the residual displacement spectra under near-fault (NF) ground motions is proposed by combining the long short-term memory network (LSTM) and back-propagation (BP) network. The model is featured by its capacity of predicting the residual displacement spectrum under a given NF ground motion while considering the effects of structural parameters. To construct this model, 315 natural and artificial NF ground motions were employed to compute the residual displacement spectra through elastoplastic time history analysis considering different structural parameters. Based on the resulted dataset with a total of 9,450 samples, the proposed model was finally trained and tested. The results show that the proposed model has a satisfactory accuracy as well as a high efficiency in predicting residual displacement spectra under given NF ground motions while considering the impacts of structural parameters.

A novel approach for predicting lateral displacement caused by pile installation

  • Li, Chao;Zou, Jin-feng;Li, Lin
    • Geomechanics and Engineering
    • /
    • 제20권2호
    • /
    • pp.147-154
    • /
    • 2020
  • A novel approach for predicting lateral displacement caused by pile installation in anisotropic clay is presented, on the basis of the cylindrical and spherical cavities expansion theory. The K0-based modified Cam-clay (K0-MCC) model is adopted for the K0-consolidated clay and the process of pile installation is taken as the cavity expansion problem in undrained condition. The radial displacement of plastic region is obtained by combining the cavity wall boundary and the elastic-plastic (EP) boundary conditions. The predicted equations of lateral displacement during single pile and multi-pile installation are proposed, and the hydraulic fracture problem in the vicinity of the pile tip is investigated. The comparison between the lateral displacement obtained from the presented approach and the measured data from Chai et al. (2005) is carried out and shows a good agreement. It is suggested that the presented approach is a useful tool for the design of soft subsoil improvement resulting from the pile installation.

모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정 (Estimation of Displacement Responses from the Measured Dynamic Strain Signals Using Mode Decomposition Technique)

  • 김성완;장성진;김남식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.109-117
    • /
    • 2008
  • In this study, a method predicting the displacement responseof structures from the measured dynamic strain signal is proposed by using a mode decomposition technique. Dynamic loadings including wind and seismic loadings could be exerted to the bridge. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. To overcome such a problem, a mode decomposition technique was used in this study. The measured strain signal is decomposed into each modal component by using the empirical mode decomposition(EMD) as one of mode decomposition techniques. Then, the decomposed strain signals on each modal component are transformed into the modal displacement components. And the corresponding mode shapes can be also estimated by using the proper orthogonal decomposition(POD) from the measured strain signal. Thus, total displacement response could be predicted from combining the modal displacement components.

  • PDF

On successive machine learning process for predicting strength and displacement of rectangular reinforced concrete columns subjected to cyclic loading

  • Bu-seog Ju;Shinyoung Kwag;Sangwoo Lee
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.513-525
    • /
    • 2023
  • Recently, research on predicting the behavior of reinforced concrete (RC) columns using machine learning methods has been actively conducted. However, most studies have focused on predicting the ultimate strength of RC columns using a regression algorithm. Therefore, this study develops a successive machine learning process for predicting multiple nonlinear behaviors of rectangular RC columns. This process consists of three stages: single machine learning, bagging ensemble, and stacking ensemble. In the case of strength prediction, sufficient prediction accuracy is confirmed even in the first stage. In the case of displacement, although sufficient accuracy is not achieved in the first and second stages, the stacking ensemble model in the third stage performs better than the machine learning models in the first and second stages. In addition, the performance of the final prediction models is verified by comparing the backbone curves and hysteresis loops obtained from predicted outputs with actual experimental data.

모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정 (Estimation of Displacement Response from the Measured Dynamic Strain Signals Using Mode Decomposition Technique)

  • 장성진;김남식
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.507-515
    • /
    • 2008
  • 본 연구에서는 모드분해기법을 이용한 변형률신호로부터 변위응답추정 방법을 개발하였다. 일반적으로 교량의 안정성평가는 완공 후에 초점이 맞추어져 있다. 하지만 가설 중에도 풍하중과 지진하중과 같은 동적하중에 노출되어 있으며, 이런 동적하중에 대한 안정성을 검토하기 위해 교량의 안정성 평가에 있어 중요한 인자인 변위를 추정하는 것이 중요하다. 그러나 건설현장에서의 적절한 변위측정 방법의 부재로 인하여 대형구조물의 전체적인 변위를 측정할 수 없는 것이 현실이다. 본 연구에서는 간접적으로 변위를 추정하는 방법인 변형률로 변위를 추정하는 방법을 제시하였으며, 광섬유 브래그 격자 센서(fiber optic Bragg-grating sensor)를 사용하여 변형률을 계측하였다. 기존에도 FBG센서를 이용한 변위추정 방법이 있었으며 기존의 방법으로는 정적하중에 대한 변위추정은 가능하였으나 고차 모드의 변형률신호와 노이즈의 영향 때문에 동적하중에 대한 변위추정은 많은 오차가 발생하여 정확한 변위추정이 어려웠다. 이런 오차를 줄이는 방법으로 모드분해기법을 사용하였다. 모드분해기법은 변형률신호로부터 proper orthogonal decomposition(POD)을 이용하여 추정한 모드형상과 empirical mode decomposition(EMD)을 이용하여 모드 분해한 변형률신호로 모드별 변위응답을 추정하고, 구조물의 주요 모드에 대한 변위응답을 합하여 전체변위응답을 추정하는 방법이다. 제안한 모드분해기법을 검증하기 위해 실내모형실험을 수행하였다.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

Predicting the lateral displacement of tall buildings using an LSTM-based deep learning approach

  • Bubryur Kim;K.R. Sri Preethaa;Zengshun Chen;Yuvaraj Natarajan;Gitanjali Wadhwa;Hong Min Lee
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.379-392
    • /
    • 2023
  • Structural health monitoring is used to ensure the well-being of civil structures by detecting damage and estimating deterioration. Wind flow applies external loads to high-rise buildings, with the horizontal force component of the wind causing structural displacements in high-rise buildings. This study proposes a deep learning-based predictive model for measuring lateral displacement response in high-rise buildings. The proposed long short-term memory model functions as a sequence generator to generate displacements on building floors depending on the displacement statistics collected on the top floor. The model was trained with wind-induced displacement data for the top floor of a high-rise building as input. The outcomes demonstrate that the model can forecast wind-induced displacement on the remaining floors of a building. Further, displacement was predicted for each floor of the high-rise buildings at wind flow angles of 0° and 45°. The proposed model accurately predicted a high-rise building model's story drift and lateral displacement. The outcomes of this proposed work are anticipated to serve as a guide for assessing the overall lateral displacement of high-rise buildings.

Image-based characterization of internal erosion around pipe in earth dam

  • Dong-Ju Kim;Samuel OIamide Aregbesola;Jong-Sub Lee;Hunhee Cho;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • 제33권5호
    • /
    • pp.481-496
    • /
    • 2024
  • Internal erosion around pipes can lead to the failure of earth dams through various mechanisms. This study investigates the displacement patterns in earth dam models under three different failure modes due to internal erosion, using digital image correlation (DIC) methods. Three failure modes—erosion along a pipe (FM1), pipe leakage leading to soil erosion (FM2), and erosion in a pipe due to defects (FM3)—are analyzed using two- and three-dimensional image- processing techniques. The internal displacement of the cross-sectional area and the surface displacement of the downstream slope in the dam models are monitored using an image acquisition system. Physical model tests reveal that FM1 exhibits significant displacement on the upper surface of the downstream slope, FM2 shows focused displacement around the pipe defect, and FM3 demonstrates increased displacement on the upstream slope. The variations in internal and surface displacements with time depend on the segmented area and failure mode. Analyzing the relationships between internal and surface displacements using Pearson correlation coefficients reveals various displacement patterns for the segmented areas and failure modes. Therefore, the image-based characterization methods presented in this study may be useful for analyzing the displacement distribution and behavior of earth dams around pipes, and further, for understanding and predicting their failure mechanisms.

A study on the prediction of tunnel crown and surface settlement in tunneling as a function of deformation modulus and overburden

  • Kim Seon-Hong;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.129-141
    • /
    • 2003
  • The precise prediction of ground displacement plays an important role in planning and constructing tunnels. In this study, an equation for predicting the surface and crown settlement is suggested by examining the theories of ground movement caused by tunnel excavation. From the 3D numerical modeling, the reinforcement effect of UAM (Umbrella Arch Method) is quantitatively analyzed with respect to deformation modulus and overburden. By using a regression technique for the numerical results, an equation for predicting the settlement is suggested.

  • PDF

지진시 옹벽의 수평변위 예측기법의 개발 (Development of Technique for Predicting Horizontal Displacement of Retaining Wall Induced by Earthquake)

  • 이승현;김병일
    • 한국산학기술학회논문지
    • /
    • 제22권5호
    • /
    • pp.143-150
    • /
    • 2021
  • 본 연구에서는 지진시 옹벽의 수평변위량을 예측하는 기법을 개발하고자 옹벽과 지반의 진동시스템에 대한 운동 방정식을 유도하고 그로부터 도출되는 미분방정식은 Runge-Kutta-Nystrom 방법을 이용하여 해를 구하였다. 이러한 계산과정을 고려하여 지진시 옹벽의 수평변위를 얻는 해석과정을 프로그램화하였는데 해석기법의 핵심이 되는 변위-힘 관계를 탄성완전소성으로 모델링하는 계산 알고리즘을 제시하였다. 개발된 프로그램을 가정한 옹벽문제에 적용한 결과 해석을 통해 얻은 시간-변위관계와 시간-힘 관계 그리고 변위-힘 관계는 합리적인 결과를 보임을 알 수 있었다. 본 연구를 통해 개발된 해석기법에 의하면 진동시간이 경과함에 따라 옹벽에는 전면방향으로 변위가 발생되게 되는데 사이클당 변위량은 시간이 경과됨에 따라 일정한 값에 수렴됨을 알 수 있었다. 자연 진동주기에 따른 옹벽의 변위를 계산해 보았는데 한 개의 스프링을 적용한 경우의 스프링상수로부터 유도되는 자연 진동주기가 지진 진동주기와 같을 때 보다는 약간의 차이를 보일 때 변위가 가장 크게 계산되었다. 이러한 이유는 옹벽-지반 진동시스템이 강성이 다른 두 개의 스프링으로 모사되었기 때문으로 볼 수 있다.