It is of great importance to assess the residual displacement demand in the performance-based seismic design. In this paper, a hybrid deep learning model for predicting the residual displacement spectra under near-fault (NF) ground motions is proposed by combining the long short-term memory network (LSTM) and back-propagation (BP) network. The model is featured by its capacity of predicting the residual displacement spectrum under a given NF ground motion while considering the effects of structural parameters. To construct this model, 315 natural and artificial NF ground motions were employed to compute the residual displacement spectra through elastoplastic time history analysis considering different structural parameters. Based on the resulted dataset with a total of 9,450 samples, the proposed model was finally trained and tested. The results show that the proposed model has a satisfactory accuracy as well as a high efficiency in predicting residual displacement spectra under given NF ground motions while considering the impacts of structural parameters.
A novel approach for predicting lateral displacement caused by pile installation in anisotropic clay is presented, on the basis of the cylindrical and spherical cavities expansion theory. The K0-based modified Cam-clay (K0-MCC) model is adopted for the K0-consolidated clay and the process of pile installation is taken as the cavity expansion problem in undrained condition. The radial displacement of plastic region is obtained by combining the cavity wall boundary and the elastic-plastic (EP) boundary conditions. The predicted equations of lateral displacement during single pile and multi-pile installation are proposed, and the hydraulic fracture problem in the vicinity of the pile tip is investigated. The comparison between the lateral displacement obtained from the presented approach and the measured data from Chai et al. (2005) is carried out and shows a good agreement. It is suggested that the presented approach is a useful tool for the design of soft subsoil improvement resulting from the pile installation.
In this study, a method predicting the displacement responseof structures from the measured dynamic strain signal is proposed by using a mode decomposition technique. Dynamic loadings including wind and seismic loadings could be exerted to the bridge. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. To overcome such a problem, a mode decomposition technique was used in this study. The measured strain signal is decomposed into each modal component by using the empirical mode decomposition(EMD) as one of mode decomposition techniques. Then, the decomposed strain signals on each modal component are transformed into the modal displacement components. And the corresponding mode shapes can be also estimated by using the proper orthogonal decomposition(POD) from the measured strain signal. Thus, total displacement response could be predicted from combining the modal displacement components.
Recently, research on predicting the behavior of reinforced concrete (RC) columns using machine learning methods has been actively conducted. However, most studies have focused on predicting the ultimate strength of RC columns using a regression algorithm. Therefore, this study develops a successive machine learning process for predicting multiple nonlinear behaviors of rectangular RC columns. This process consists of three stages: single machine learning, bagging ensemble, and stacking ensemble. In the case of strength prediction, sufficient prediction accuracy is confirmed even in the first stage. In the case of displacement, although sufficient accuracy is not achieved in the first and second stages, the stacking ensemble model in the third stage performs better than the machine learning models in the first and second stages. In addition, the performance of the final prediction models is verified by comparing the backbone curves and hysteresis loops obtained from predicted outputs with actual experimental data.
본 연구에서는 모드분해기법을 이용한 변형률신호로부터 변위응답추정 방법을 개발하였다. 일반적으로 교량의 안정성평가는 완공 후에 초점이 맞추어져 있다. 하지만 가설 중에도 풍하중과 지진하중과 같은 동적하중에 노출되어 있으며, 이런 동적하중에 대한 안정성을 검토하기 위해 교량의 안정성 평가에 있어 중요한 인자인 변위를 추정하는 것이 중요하다. 그러나 건설현장에서의 적절한 변위측정 방법의 부재로 인하여 대형구조물의 전체적인 변위를 측정할 수 없는 것이 현실이다. 본 연구에서는 간접적으로 변위를 추정하는 방법인 변형률로 변위를 추정하는 방법을 제시하였으며, 광섬유 브래그 격자 센서(fiber optic Bragg-grating sensor)를 사용하여 변형률을 계측하였다. 기존에도 FBG센서를 이용한 변위추정 방법이 있었으며 기존의 방법으로는 정적하중에 대한 변위추정은 가능하였으나 고차 모드의 변형률신호와 노이즈의 영향 때문에 동적하중에 대한 변위추정은 많은 오차가 발생하여 정확한 변위추정이 어려웠다. 이런 오차를 줄이는 방법으로 모드분해기법을 사용하였다. 모드분해기법은 변형률신호로부터 proper orthogonal decomposition(POD)을 이용하여 추정한 모드형상과 empirical mode decomposition(EMD)을 이용하여 모드 분해한 변형률신호로 모드별 변위응답을 추정하고, 구조물의 주요 모드에 대한 변위응답을 합하여 전체변위응답을 추정하는 방법이다. 제안한 모드분해기법을 검증하기 위해 실내모형실험을 수행하였다.
This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.
Bubryur Kim;K.R. Sri Preethaa;Zengshun Chen;Yuvaraj Natarajan;Gitanjali Wadhwa;Hong Min Lee
Wind and Structures
/
제36권6호
/
pp.379-392
/
2023
Structural health monitoring is used to ensure the well-being of civil structures by detecting damage and estimating deterioration. Wind flow applies external loads to high-rise buildings, with the horizontal force component of the wind causing structural displacements in high-rise buildings. This study proposes a deep learning-based predictive model for measuring lateral displacement response in high-rise buildings. The proposed long short-term memory model functions as a sequence generator to generate displacements on building floors depending on the displacement statistics collected on the top floor. The model was trained with wind-induced displacement data for the top floor of a high-rise building as input. The outcomes demonstrate that the model can forecast wind-induced displacement on the remaining floors of a building. Further, displacement was predicted for each floor of the high-rise buildings at wind flow angles of 0° and 45°. The proposed model accurately predicted a high-rise building model's story drift and lateral displacement. The outcomes of this proposed work are anticipated to serve as a guide for assessing the overall lateral displacement of high-rise buildings.
Internal erosion around pipes can lead to the failure of earth dams through various mechanisms. This study investigates the displacement patterns in earth dam models under three different failure modes due to internal erosion, using digital image correlation (DIC) methods. Three failure modes—erosion along a pipe (FM1), pipe leakage leading to soil erosion (FM2), and erosion in a pipe due to defects (FM3)—are analyzed using two- and three-dimensional image- processing techniques. The internal displacement of the cross-sectional area and the surface displacement of the downstream slope in the dam models are monitored using an image acquisition system. Physical model tests reveal that FM1 exhibits significant displacement on the upper surface of the downstream slope, FM2 shows focused displacement around the pipe defect, and FM3 demonstrates increased displacement on the upstream slope. The variations in internal and surface displacements with time depend on the segmented area and failure mode. Analyzing the relationships between internal and surface displacements using Pearson correlation coefficients reveals various displacement patterns for the segmented areas and failure modes. Therefore, the image-based characterization methods presented in this study may be useful for analyzing the displacement distribution and behavior of earth dams around pipes, and further, for understanding and predicting their failure mechanisms.
한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
/
pp.129-141
/
2003
The precise prediction of ground displacement plays an important role in planning and constructing tunnels. In this study, an equation for predicting the surface and crown settlement is suggested by examining the theories of ground movement caused by tunnel excavation. From the 3D numerical modeling, the reinforcement effect of UAM (Umbrella Arch Method) is quantitatively analyzed with respect to deformation modulus and overburden. By using a regression technique for the numerical results, an equation for predicting the settlement is suggested.
본 연구에서는 지진시 옹벽의 수평변위량을 예측하는 기법을 개발하고자 옹벽과 지반의 진동시스템에 대한 운동 방정식을 유도하고 그로부터 도출되는 미분방정식은 Runge-Kutta-Nystrom 방법을 이용하여 해를 구하였다. 이러한 계산과정을 고려하여 지진시 옹벽의 수평변위를 얻는 해석과정을 프로그램화하였는데 해석기법의 핵심이 되는 변위-힘 관계를 탄성완전소성으로 모델링하는 계산 알고리즘을 제시하였다. 개발된 프로그램을 가정한 옹벽문제에 적용한 결과 해석을 통해 얻은 시간-변위관계와 시간-힘 관계 그리고 변위-힘 관계는 합리적인 결과를 보임을 알 수 있었다. 본 연구를 통해 개발된 해석기법에 의하면 진동시간이 경과함에 따라 옹벽에는 전면방향으로 변위가 발생되게 되는데 사이클당 변위량은 시간이 경과됨에 따라 일정한 값에 수렴됨을 알 수 있었다. 자연 진동주기에 따른 옹벽의 변위를 계산해 보았는데 한 개의 스프링을 적용한 경우의 스프링상수로부터 유도되는 자연 진동주기가 지진 진동주기와 같을 때 보다는 약간의 차이를 보일 때 변위가 가장 크게 계산되었다. 이러한 이유는 옹벽-지반 진동시스템이 강성이 다른 두 개의 스프링으로 모사되었기 때문으로 볼 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.