• Title/Summary/Keyword: displacement monitoring

Search Result 517, Processing Time 0.029 seconds

A Case Study on the Design and Construction of a 2-arch Tunnel with Varying Section (2-아치 변단면터널의 설계 및 시공사례 연구)

  • Choi, Jae-Jin;Park, Yeon-Jun;Kim, Si-Keun;Park, Jae-Hyun
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.310-320
    • /
    • 2012
  • This paper describes the design and construction of a 2-arch tunnel with varying section. This new design has advantages of 2-arch tunnels, which is rather expensive, but is still economically competitive compared to parallel tunnels. Economic analysis was also conducted. To secure the stability of the varying section tunnel, excavated part was reinforced by tie-bolts and RRS, and 2-arch part was supported by EPS blocks and concrete walls. Stability of the pillar was theoretically analyzed and also examined by numerical simulations for various widths. Displacement monitoring was conducted and results were compared with numerical results. Economic analysis showed reductions in construction cost and period by 11% and 10 months respectively.

Analysis of Whole Tunnel Stability by Using Rock Mass Classification and Mohr-Coulomb Analytical Solution (암반분류와 Mohr-Coulomb 이론해를 이용한 터널 전구간 안정성 분석)

  • Jung, Yong-Bok;Park, Eui-Seob;Ryu, Dong-Woo;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.280-287
    • /
    • 2013
  • Finite element or difference methods are applied to the analysis of the tunnel stability and they provide detailed behaviour of analyzed tunnel sections but it is rather inefficient to analyze all the section of tunnel by using these methods. In this study, the authors suggest a new stability analysis method for whole tunnel to provide an efficient and easy way to understand the behaviour of whole tunnel by using an analytical solution with the assumption of equivalent circular tunnel. The mechanical behaviour, radial strain and plastic zone radius of whole tunnel were analyzed and appropriate support pressure to maintain the displacement within the allowable limit was suggested after the application of this method to the tunnel. Consequently, it was confirmed that this method can provide quick analysis of the whole tunnel stability and the quantitative information for subsequent measures such as selection of tunnel sections for detailed numerical analysis, set up of the monitoring plan, and so on.

Numerical investigations on stability evaluation of a jointed rock slope during excavation using an optimized DDARF method

  • Li, Yong;Zhou, Hao;Dong, Zhenxing;Zhu, Weishen;Li, Shucai;Wang, Shugang
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.271-281
    • /
    • 2018
  • A jointed rock slope stability evaluation was simulated by a discontinuous deformation analysis numerical method to investigate the process and safety factors for different crack distributions and different overloading situations. An optimized method using Discontinuous Deformation Analysis for Rock Failure (DDARF) is presented to perform numerical investigations on the jointed rock slope stability evaluation of the Dagangshan hydropower station. During the pre-processing of establishing the numerical model, an integrated software system including AutoCAD, Screen Capture, and Excel is adopted to facilitate the implementation of the numerical model with random joint network. These optimizations during the pre-processing stage of DDARF can remarkably improve the simulation efficiency, making it possible for complex model calculation. In the numerical investigations on the jointed rock slope stability evaluations using the optimized DDARF, three calculation schemes have been taken into account in the numerical model: (I) no joint; (II) two sets of regular parallel joints; and (III) multiple sets of random joints. This model is capable of replicating the entire processes including crack initiation, propagation, formation of shear zones, and local failures, and thus is able to provide constructive suggestions to supporting schemes for the slope. Meanwhile, the overloading numerical simulations under the same three schemes have also been performed. Overloading safety factors of the three schemes are 5.68, 2.42 and 1.39, respectively, which are obtained by analyzing the displacement evolutions of key monitoring points during overloading.

Electro-fatigue Characteristic of Shape Memory Alloy Applied to the Electrosurgical Knee Wand of Variation of Wand Head Angle in Electrosurgical Knee Surgeries (헤드각이 변화하는 Electrosurgical Knee Wand에 적용된 형상기억합금 스프링의 전기적 피로특성)

  • An, Jae-Uk;Kim, Cheol-Woong;Lee, Ho-Sang;Wang, Joon-Ho;Oh, Dong-Joon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1547-1552
    • /
    • 2008
  • The tip of these catheter with straight needles is not able to reach in the vicinity of the disc bulging, which are the cause of the low back pain and because the far indirect radio-frequency treatment results in the decompression, the nucleoplasty has the limit. Many incurable diseases has not been solved due to the unexistence of the advanced technique for the MIS human body catheter device. To increase the possibility of nucleoplasty, the needle tip should be located at the closest area of the lesion. For this reason, the best way to increase the success rate of the operation is that the needle tip should access 3-dimensionally to the operating field as soon as possible. To achieve this aim, our studies are restricted as follows: 1) the SMA catheter design to control the 3-dimensional direction, 2) the security of the immediate response by the positive control of the SMA element thermal distribution using Peltier thermoelectric elements, 3) the aquisition of the control data by monitoring the relationship between the temperature of SMA element and the displacement, and 4) the design of the controller to guarantee the accurate location.

  • PDF

Performance evaluation method of homogeneous stereo camera system for full-field structural deformation estimation

  • Yun, Jong-Min;Kim, Ho-Young;Han, Jae-Hung;Kim, Hong-Il;Kwon, Hyuk-Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.380-393
    • /
    • 2015
  • This study presents how we can evaluate stereo camera systems for the structural deformation monitoring. A stereo camera system, consisting of a set of stereo cameras and reflective markers attached on the structure, is introduced for the measurement and the stereo pattern recognition (SPR) method is utilized for the full-field structural deformation estimation. Performance of this measurement system depends on many parameters including types and specifications of the cameras, locations and orientations of them, and sizes and positions of markers; it is difficult to experimentally identify the effects of each parameter on the measurement performance. In this study, a simulation framework for evaluating performance of the stereo camera systems with various parameters has been developed. The maximum normalized root-mean-square (RMS) error is defined as a representative index of stereo camera system performance. A plate structure is chosen for an introductory example. Its several modal harmonic vibrations are generated and estimated in the simulation framework. Two cases of simulations are conducted to see the effects of camera locations and the resolutions of the cameras. An experimental validation is carried out for a few selected cases from the simulations. Using the simultaneous laser displacement sensor (LDS) measurements as the reference, the measurement errors are obtained and compared with the simulations.

Assessment of interhospital transport care for pediatric patients

  • Chaichotjinda, Krittiya;Chantra, Marut;Pandee, Uthen
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.5
    • /
    • pp.184-188
    • /
    • 2020
  • Background: Many critically ill patients require transfer to a higher-level hospital for complex medical care. Despite the publication of the American Academy of Pediatrics guidelines for pediatric interhospital transportation services and the establishment of many pediatric transport programs, adverse events during pediatric transport still occur. Purpose: To determine the incidence of adverse events occurring during pediatric transport and explore their complications and risk factors. Methods: This prospective observational study explored the adverse events that occurred during the interhospital transport of all pediatric patients referred to the pediatric intensive care unit of Ramathibodi Hospital between March 2016 and June 2017. Results: There were 122 pediatric transports to the unit. Adverse events occurred in 25 cases (22%). Physiologic deterioration occurred in 15 patients (60%). Most issues (11 events) involved circulatory problems causing patient hypotension and poor tissue perfusion requiring fluid resuscitation or inotropic administration on arrival at the unit. Respiratory complications were the second most common cause (4 events). Equipment-related adverse events occurred in 5 patients (20%). The common causes were accidental extubation and endotracheal tube displacement. Five patients had both physiologic deterioration and equipment-related adverse events. Regarding transport personnel, the group without complications more often had a physician escort than the group with complications (92% vs. 76%; relative risk, 2.4; P=0.028). Conclusion: The incidence of adverse events occurring during the transport of critically ill pediatric patients was 22%. Most events involved physiological deterioration. Escort personnel maybe the key to preventing and appropriately monitoring complications occurring during transport.

Estimation for Primary Tunnel Lining Loads

  • Kim, Hak-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.153-204
    • /
    • 1998
  • Prediction of lining loads due to tunnelling is one of the major issues to be addressed in the design of a tunnel. The objective of this study is to investigate rational and realistic design loads on tunnel linings. factors influencing the lining load are summarized and discussed. The instruments for measuring the lining loads are reviewed and discussed because field measurements are often necessary to verify the design methods. Tunnel construction in the City of Edmonton has been very active for storm and sanitary purposes. Since the early 1970's, the city has also been developing an underground Light Rail Transit system. The load measurements obtained from these tunnels are compared with the results from the existing design methods. However, none of the existing methods are totally satisfactory, Therefore, there is some room for improvement in the prediction of lining loads. The convergence-confinement method is reviewed and applied to a case history of a tunnel in Edmonton. The convergence curves are obtained from 2-D finite element analyses using three different material models and theoretical equations. The limitation of the convergence-confinement method is discussed by comparing these curves with the field measurements. Three-dimensional finite element analyses are performed to gain a better understanding of stress and displacement behaviour near the tunnel face. An improved design method is proposed based on the review of existing design methods and the performance of numerical analyses. A specific method or combination of two different methods is suggested for the estimation of lining loads for different conditions of tunnelling. A method to determine the stress reduction factor is described. Typical values of dimensionless load factors nD/H for tunnels in Edmonton are obtained from parametric analyses. Finally, the loads calculated using the proposed method are compared with field measurements collected from various tunnels in terms of soil types and construction methods to verify the method. The proposed method gives a reasonable approximation of the lining loads. The proposed method is recommended as an approximate guideline for the design of tunnels, but the results should be confirmed by field measurements due to the uncertainties of the ground and lining properties and the construction procedures, This is the reason that in-situ monitoring should be an integral part of the design procedure.

  • PDF

Vibration control of small horizontal axis wind turbine blade with shape memory alloy

  • Mouleeswaran, Senthil Kumar;Mani, Yuvaraja;Keerthivasan, P.;Veeraragu, Jagadeesh
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.257-262
    • /
    • 2018
  • Vibrational problems in the domestic Small Horizontal Axis Wind Turbines (SHAWT) are due to flap wise vibrations caused by varying wind velocities acting perpendicular to its blade surface. It has been reported that monitoring the structural health of the turbine blades requires special attention as they are key elements of a wind power generation, and account for 15-20% of the total turbine cost. If this vibration problem is taken care, the SHAWT can be made as commercial success. In this work, Shape Memory Alloy (SMA) wires made of Nitinol (Ni-Ti) alloys are embedded into the Glass Fibre Reinforced Polymer (GFRP) wind turbine blade in order to reduce the flapwise vibrations. Experimental study of Nitinol (Ni-Ti) wire characteristics has been done and relationship between different parameters like current, displacement, time and temperature has been established. When the wind turbine blades are subjected to varying wind velocity, flapwise vibration occurs which has to be controlled continuously, otherwise the blade will be damaged due to the resonance. Therefore, in order to control these flapwise vibrations actively, a non-linear current controller unit was developed and fabricated, which provides actuation force required for active vibration control in smart blade. Experimental analysis was performed on conventional GFRP and smart blade, depicted a 20% increase in natural frequency and 20% reduction in amplitude of vibration. With addition of active vibration control unit, the smart blade showed 61% reduction in amplitude of vibration.

Structural Integrity Evaluation by System Stress Analysis for Fuel Piping in a Process Plant (공정플랜트 연료배관의 시스템응력 해석에 의한 구조 건전성 평가)

  • Jeong, Seong Yong;Yoon, Kee Bong;Duyet, Pham Van;Yu, Jong Min;Kim, Ji Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.44-50
    • /
    • 2013
  • Process gas piping is one of the most basic components frequently used in the refinery and petrochemical plants. Many kinds of by-product gas have been used as fuel in the process plants. In some plants, natural gas is additionally introduced and mixed with the byproduct gas for upgrading the fuel. In this case, safety or design margin of the changed piping system of the plant should be re-evaluated based on a proper design code such as ASME or API codes since internal pressure, temperature and gas compositions are different from the original plant design conditions. In this study, series of piping stress analysis were conducted for a process piping used for transporting the mixed gas of the by-product gas and the natural gas from a mixing drum to a knock-out drum in a refinery plant. The analysed piping section had been actually installed in a domestic industry and needed safety audit since the design condition was changed. Pipe locations of the maximum system stress and displacement were determined, which can be candidate inspection and safety monitoring points during the upcoming operation period. For studying the effects of outside air temperature to safety the additional stress analysis were conducted for various temperatures in $0{\sim}30^{\circ}C$. Effects of the friction coefficient between the pipe and support were also investigated showing a proper choice if the friction coefficient is important. The maximum system stresses were occurred mainly at elbow, tee and support locations, which shows the thermal load contributes considerably to the system stress rather than the internal pressure or the gravity loads.

An efficient shear deformation theory for wave propagation of functionally graded material plates

  • Boukhari, Ahmed;Atmane, Hassen Ait;Tounsi, Abdelouahed;Adda Bedia, E.A.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.837-859
    • /
    • 2016
  • An efficient shear deformation theory is developed for wave propagation analysis of an infinite functionally graded plate in the presence of thermal environments. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The thermal effects and temperature-dependent material properties are both taken into account. The temperature field is assumed to be a uniform distribution over the plate surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching.bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and temperature on wave propagation of functionally graded plate are discussed in detail. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded plate. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.