• Title/Summary/Keyword: displacement control strategy

Search Result 47, Processing Time 0.026 seconds

Hysteresis Compensation in Piezoceramic Actuators Through Preisach Model Inversion (Preisach 모델을 이용한 압전액츄에이터 이력 보상)

  • Chung C.Y.;Lee D.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1074-1078
    • /
    • 2005
  • In precision positioning applications, such as scanning tunneling microscopy and diamond turning machines [1], it is often required that actuators have nanometer resolution in displacement, high stiffness, and fast frequency response. These requirements are met by the use of piezoceramic actuators. A major limitation of piezoceramic actuators, however, is their lack of accuracy due to hysteresis nonlinearity and drift. The maximum error due to hysteresis can be as much as 10-15% of the path covered if the actuators are run in an open-loop fashion. Hence, the accurate control of piezoceramic actuators requires a control strategy that incorporates some form of compensation for the hysteresis. One approach is to develop an accurate model of the hysteresis and the use the inverse as a compensator. The Preisach model has frequently been employed as a nonlinear model for representing the hysteresis, because it encompasses the basic features of the hysteresis phenomena in a conceptually simple and mathematically elegant way. In this paper, a new numerical inversion scheme of the Preisach model is developed with an aim of compensating hysteresis in piezoceramic actuators. The inversion scheme is implemented using the first-order reversal functions and is presented in a recursive form. The inverted model is then incorporated in an open-loop control strategy that regulates the piezoceramic actuator and compensates for hysteretic effects. Experimental results demonstrate satisfactory regulation of the position of the piezoceramic actuator to the desired trajectories.

  • PDF

A study on robustness of automatic seam tracking system (용접선 자동추적장치의 강인성에 관한 연구)

  • 강희신;조택동;양상민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.775-778
    • /
    • 1996
  • In this research, the robustness of a seam tracking for the automatic welding system is studied. The laser displacement sensor is used as a seam finder. X-Y moving table drived by ac servo motor controls the position and velocity of the torch-and-sensor part. However, dc servo motor is used to control the position and velocity of the torch. The sensor locates ahead of torch to preview the weld line, and brings about the inaccuracy on the torch tracking. To enhance the robustness on this system against the influence of disturbances and model uncertainty, H$\_$.inf./ control is applied to the angular motion of torch. The simulation shows that the tracking accuracy improved significantly. Also, experimental results give a good performance of H$\_$.inf./ control strategy to the automatic seam tracking system for the welding.

  • PDF

Rosition control of a Flexible Finger Driven by Piezoelectric Bimorph Cells Using Fuzzy Algorithms

  • 류재춘;박종국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.81-88
    • /
    • 1997
  • This paper dealt with the position control of a flexible miniature finger driven by piezoelectric bimorph cells, cemented on both side of the finger. Bending moments generated by cells drives the finger, and end-point of the finger is controlled, so as to move in synchrony with fluctation of target and maintain a constant distance between target surface and inger's tip. The voltage applied for the cell is controlled by tip displacement error and error rate. We proposed a PD-Fuzzy controller under conception of PD control strategy. It brought and advantage which reduce number of rules than that of same type conventional fuzzy system and more correct redponse than PID control results.

  • PDF

Control of High Power Factor Matrix Converter using Mapping Function (매핑함수에 의한 고역률 매트릭스 컨버터의 제어)

  • Kim, Chun-Sik;Kim, Kwang-Tae;Suh, Ki-Young;Kwon, Soon-Kurl;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1242-1244
    • /
    • 2000
  • A new control method using average comparison strategy have been proposed in this paper. This control method realizes sinusoidal input and output current. unity input displacement factor regardless of load power factor. Moreover, compensation of the asymmetrical and/or harmonic containing input voltage is automatically realized, and calculation time of control function is reduced.

  • PDF

Validation of model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.259-273
    • /
    • 2023
  • Real-time hybrid simulation (RTHS) is an effective experimental technique for structural dynamic assessment. However, time delay causes displacement de-synchronization at the interface between the numerical and physical substructures, negatively affecting the accuracy and stability of RTHS. To this end, the authors have proposed a model-based adaptive control strategy with a Kalman filter (MAC-KF). In the proposed method, the time delay is mainly mitigated by a parameterized feedforward controller, which is designed using the discrete inverse model of the control plant and adjusted using the KF based on the displacement command and measurement. A feedback controller is employed to improve the robustness of the controller. The objective of this study is to further validate the power of dealing with a nonlinear control plant and to investigate the potential challenges of the proposed method through actual experiments. In particular, the effect of the order of the feedforward controller on tracking performance was numerically investigated using a nonlinear control plant; a series of actual RTHS of a frame structure equipped with a magnetorheological damper was performed using the proposed method. The findings reveal significant improvement in tracking accuracy, demonstrating that the proposed method effectively suppresses the time delay in RTHS. In addition, the parameters of the control plant are timely updated, indicating that it is feasible to estimate the control plant parameter by KF. The order of the feedforward controller has a limited effect on the control performance of the MAC-KF method, and the feedback controller is beneficial to promote the accuracy of RTHS.

Simulation of fracture in plain concrete modeled as a composite material

  • Bui, Thanh T.;Attard, Mario M.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.499-516
    • /
    • 2005
  • A composite model is used to represent the heterogeneity of plain concrete consisting of coarse aggregates, mortar matrix and the mortar-aggregate interface. The composite elements of plain concrete are modeled using triangular finite element units which have six interface nodes along the sides. Fracture is captured through a constitutive single branch softening-fracture law at the interface nodes, which bounds the elastic domain inside each triangular unit. The inelastic displacement at an interface node represents the crack opening or sliding displacement and is conjugate to the internodal force. The path-dependent softening behaviour is developed within a quasi-prescribed displacement control formulation. The crack profile is restricted to the interface boundaries of the defined mesh. No re-meshing is carried out. Solutions to the rate formulation are obtained using a mathematical programming procedure in the form of a linear complementary problem. An event by event solution strategy is adopted to eliminate solutions with simultaneous formation of softening zones in symmetric problems. The composite plain concrete model is compared to experimental results for the tensile crack growth in a Brazilian test and three-point bending tests on different sized specimens. The model is also used to simulate wedge-type shear-compression failure directly under the loading platen of a Brazilian test.

Stochastic optimum design of linear tuned mass dampers for seismic protection of high towers

  • Marano, Giuseppe Carlo;Greco, Rita;Palombella, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.603-622
    • /
    • 2008
  • This work deals with the design optimization of tuned mass damper (TMD) devices used for mitigating vibrations in high-rise towers subjected to seismic accelerations. A stochastic approach is developed and the excitation is represented by a stationary filtered stochastic process. The effectiveness of the vibration control strategy is evaluated by expressing the objective function as the reduction factor of the structural response in terms of displacement and absolute acceleration. The mechanical characteristics of the tuned mass damper represent the design variables. Analyses of sensitivities are carried out by varying the input and structural parameters in order to assess the efficiency of the TMD strategy. Variations between two different criteria are also evaluated.

Investigations on seismic performance of nuclear power plants equipped with an optimal BIS-TMDI considering FSI effects

  • Shuaijun Zhang;Gangling Hou;Chengyu Yang;Zhihua Yue;Yuzhu Wang;Min He;Lele Sun;Xuesong Cai
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2595-2609
    • /
    • 2024
  • This paper introduces a base isolation system-tuned mass damper inerter (BIS-TMDI) hybrid system to the AP1000 nuclear power plant (NPP), which reduces seismic damage potential of the NPP structure. The effects of fluid-structure interaction (FSI) caused by the passive containment cooling system water storage tank (PCCWST) on NPP's seismic performance are investigated. The FSI of water tank theoretical model is considered based on the Housner's model, and a series of time history analyses are performed to prove the rationality of the proposed model. Three single-objective optimization strategies are employed to minimize the relative displacement variance and absolute acceleration variance of the upper structure, as well as the filtered energy index (FEI). Furthermore, a multi-objective optimization strategy considering all these three indexes is proposed to obtain optimal parameters of vibration control. The influence of vibration control strategies on the relative deformation and acceleration of the upper structure is explored with various water level ratios. The analytical results indicate that the proposed BIS-TMDI strategy has significantly reduced the NPP structure's seismic response. The effectiveness of the vibration control strategy is influenced by the water level ratio, emphasizing the significance of designing an appropriate water level ratio to reduce NPP structure's seismic response.

Suboptimal control strategy in structural control implementation

  • Xu, J.Y.;Li, Q.S.;Li, G.Q.;Wu, J.R.;Tang, J.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.107-121
    • /
    • 2005
  • The suboptimal control rule is introduced in structural control implementation as an alternative over the optimal control because the optimal control may require large amount of processing time when applied to complex structural control problems. It is well known that any time delay in structural control implementation will cause un-synchronized application of the control forces, which not only reduce the effectiveness of an active control system, but also cause instability of the control system. The effect of time delay on the displacement and acceleration responses of building structures is studied when the suboptimal control rule is adopted. Two examples are given to show the effectiveness of the suboptimal control rule. It is shown through the examples that the present method is easy in implementation and high in efficiency and it can significantly reduce the time delay in structural control implementation without significant loss of performance.

Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams

  • Beheshti-Aval, S.B.;Lezgy-Nazargah, M.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.921-938
    • /
    • 2010
  • Most of studies on control of beams containing piezoelectric sensors and actuators have been based on linear quadratic regulator (LQR) with state feedback or output feedback law. The aim of this study is to develop velocity-acceleration feedback law in the optimal control of smart piezoelectric beams. A new controller which is an optimal control system with velocity-acceleration feedback is presented. In finite element modeling of the beam, the variation of mechanical displacement through the thickness is modeled by a sinus model that ensures inter-laminar continuity of shear stress at the layer interfaces as well as the boundary conditions on the upper and lower surfaces of the beam. In addition to mechanical degrees of freedom, one electric potential degree of freedom is considered for each piezoelectric element layer. The efficiency of this control strategy is evaluated by applying to an aluminum cantilever beam under different loading conditions. Numerical simulations show that this new control scheme is almost as efficient as an optimal control system with state feedback. However, inclusion of the acceleration in the control algorithm increases practical value of a system due to easier and more accurate measurement of accelerations.