• 제목/요약/키워드: dispersion equations

검색결과 215건 처리시간 0.024초

비선형 박막으로 둘러싸인 평면 광도파로에서의 비선형 도파광 특성 (Nonlinear guided-wave properties in planar waveguides with two nonlinear bounding thin films)

  • 정종술;송석호;이일항
    • 한국광학회지
    • /
    • 제7권2호
    • /
    • pp.136-141
    • /
    • 1996
  • 본 논문에서는 두 개의 비선형 박막으로 둘러싸인 평면 광도파로에서의 TE 비선형 도파광 특성에 대한 새로운 접근 방법을 제안한다. 비선형 박막에 대한 특성을 묘사하는 비선형 특성행렬을 이용하여 비선형 광도파로에 대한 비선형 분산 방정식을 해석적 형태로 유도한다. 분산 방정식을 기반으로 하는 전산시늉으로 도파광의 파워에 대한 모드 굴절율 변화, 전장의 세기가 최대인 위치, 그리고 파워 분포 등의 도파광의 비선형 특성을 계산한다. 자기-집속형 광도파로 구조에서 비선형 박막의 두께를 감소하면 파워-의존 비선형 모드 굴절율의 광학적 쌍안정 특성이 나타나며 광학적 쌍안정 특성을 위한 임계 파워는 증가한다. 그리고 비선형 광도파로 구조 내부의 파워분포 특성은 비선형 Fabry-Perot etalon의 동작 특성과 유사한 광학적 쌍안정 특성을 나타낸다.

  • PDF

Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.237-248
    • /
    • 2018
  • This study presents the investigation of wave dispersion characteristics of a magneto-electro-elastic functionally graded (MEE-FG) nanosize beam utilizing nonlocal strain gradient theory (NSGT). In this theory, a material length scale parameter is propounded to show the influence of strain gradient stress field, and likewise, a nonlocal parameter is nominated to emphasize on the importance of elastic stress field effects. The material properties of heterogeneous nanobeam are supposed to vary smoothly through the thickness direction based on power-law form. Applying Hamilton's principle, the nonlocal governing equations of MEE-FG nanobeam are derived. Furthermore, to derive the wave frequency, phase velocity and escape frequency of MEE-FG nanobeam, an analytical solution is employed. The validation procedure is performed by comparing the results of present model with results exhibited by previous papers. Results are rendered in the framework of an exact parametric study by changing various parameters such as wave number, nonlocal parameter, length scale parameter, gradient index, magnetic potential and electric voltage to show their influence on the wave frequency, phase velocity and escape frequency of MEE-FG nanobeams.

1차원 RLH-TL 방사효과 모델링 및 해석 (Modeling and analysis of radiation effects for 1-D RLH-TL)

  • 문효상;이범선
    • 대한전자공학회논문지TC
    • /
    • 제44권12호
    • /
    • pp.8-15
    • /
    • 2007
  • 본 논문에서는 기존의 Right/left-handed 전송선(RLH-TL)에 집중 직렬 캐패시터와 병렬 인덕터 구현으로 발생하는 방사 효과를 포함하여 단위 셀을 모델링한다. 방사 효과가 고려된 RLH-TL 단위셀의 등가 회로를 제공하고 갭 커패시터와 션트 인터터에서의 방사율에 따른 Bloch 임피던스와 복소 전파상수를 해석한다. 두 개의 방사율이 같을 때 RLH-TL의 Block 임피던스는 RH-TL의 특성임피던스와 같아짐을 보인다. 게다가, 주어진 주파수에서 특정한 위상 변화를 위한 단위 셀의 설계 공식을 유도하여 제공한다. 마지막으로, 안테나 응용을 위해 RLH-TL에서 다양한 방법으로 방사효과를 control할 수 있는 설계 공식을 제공한다.

Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets

  • Xu, Kuo;Yuan, Yuan;Li, Mingyang
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.633-642
    • /
    • 2019
  • In this work, lightweight sandwich plates consisting of a functionally graded porous (FGP) core and two laminated composite face sheets resting on elastic foundation have been proposed. Three different profiles are considered for the distributions of porosities along core thickness. The main aim of this paper is the investigation of the buckling behavior of the proposed porous sandwich plates (PSPs) by reporting their critical mechanical loads and their corresponding mode shapes. A finite element method (FEM) based on first order shear deformation theories (FSDT) is developed to discretize governing equations for the buckling behavior of the proposed sandwich plates. The effects of porosity dispersion and volume, the numbers and angles of laminated layers, sandwich plate geometrical dimensions, elastic foundation coefficients, loading and boundary conditions are studied. The results show that the use of FGP core can offer a PSP with half weight core and only 5% reduction in critical buckling loads. Moreover, stacking sequences with only ${\pm}45$ orientation fibers offer the highest values of buckling loads.

Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.55-66
    • /
    • 2019
  • This work deals with the size-dependent wave propagation analysis of functionally graded (FG) anisotropic nanoplates based on a nonlocal strain gradient refined plate model. The present model incorporates two scale coefficients to examine wave dispersion relations more accurately. Material properties of FG anisotropic nanoplates are exponentially varying in the z-direction. In order to solve the governing equations for bulk waves, an analytical method is performed and wave frequencies and phase velocities are obtained as a function of wave number. The influences of several important parameters such as material graduation exponent, geometry, Winkler-Pasternak foundation parameters and wave number on the wave propagation of FG anisotropic nanoplates resting on the elastic foundation are investigated and discussed in detail. It is concluded that these parameters play significant roles on the wave propagation behavior of the nanoplates. From the best knowledge of authors, it is the first time that FG nanoplate made of anisotropic materials is investigated, so, presented numerical results can serve as benchmarks for future analysis of such structures.

Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory

  • Bennai, Riadh;Fourn, Hocine;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bessaim, Aicha
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.49-62
    • /
    • 2019
  • In this paper, an analytical analysis for the study of vibratory behavior and wave propagation of functionally graded plates (FGM) is presented based on a high order shear deformation theory. The manufacture of these plates' defects can appear in the form of porosity. This latter can question and modify the global behavior of such plates. A new shape of the distribution of porosity according to the thickness of the plate was used. The field of displacement of this theory is present of indeterminate integral variables. The modulus of elasticity and the mass density of these plates are assumed to vary according to the thickness of the plate. Equations of motion are derived by the principle of minimization of energies. Analytical solutions of free vibration and wave propagation are obtained for FGM plates simply supported by integrating the analytic dispersion relation. Illustrative examples are given also to show the effects of variation of various parameters such as(porosity parameter, material graduation, thickness-length ratio, porosity distribution) on vibration and wave propagation of FGM plates.

Correlation study on microstructure and mechanical properties of rice husk ash-Sodium aluminate geopolymer pastes

  • Singh, N. Shyamananda;Thokchom, Suresh;Debbarma, Rama
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.73-80
    • /
    • 2021
  • Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.

On thermally induced instability of FG-CNTRC cylindrical panels

  • Hashemi, Razieh;Mirzaei, Mostafa;Adlparvar, Mohammad R.
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.43-57
    • /
    • 2021
  • In this study, thermally induced bifurcation buckling of shallow composite cylindrical panels reinforced with aligned single-walled carbon nanotubes is investigated. Distribution of carbon nanotubes across the thickness of the cylindrical panel as reinforcements may be either uniform or functionally graded. Thermo-mechanical properties of the matrix and reinforcements are considered to be temperature dependent. Properties of the cylindrical panel are obtained using a refined micromechanical approach which introduces the auxiliary parameters into the rule of mixtures. The governing equations are obtained by using the static version of the Hamilton principle based on the first-order shear deformation theory and considering the linear strain-displacement relation. An energy-based Ritz method and an iterative process are used to obtain the critical buckling temperature of composite cylindrical panel with temperature dependent material properties. In addition, the effect of various parameters such as the boundary conditions, different geometrical conditions, distribution pattern of CNTs across the thickness and their volume fraction are studied on the critical buckling temperature and buckled pattern of cylindrical panels. It is shown that FG-X type of CNT dispersion is the most influential type in thermal stability.

Elastic buckling performance of FG porous plates embedded between CNTRC piezoelectric patches based on a novel quasi 3D-HSDT in hygrothermal environment

  • Yujie Zhang;Zhihang Guo;Yimin Gong;Jianzhong Shi;Mohamed Hechmi El Ouni;Farhan Alhosny
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.175-189
    • /
    • 2023
  • The under-evaluation structure includes a functionally graded porous (FGP) core which is confined by two piezoelectric carbon nanotubes reinforced composite (CNTRC) layers. The whole structure rests on the Pasternak foundation. Using quasi-3D hyperbolic shear deformation theory, governing equations of a sandwich plate are driven. Moreover, face sheets are subjected to the electric field and the whole model is under thermal loading. The properties of all layers alter continuously along with thickness direction due to the CNTs and pores distributions. By conducting the current study, the results emerged in detail to assess the effects of different parameters on buckling of structure. As instance, it is revealed that highest and lowest critical buckling load and consequently stiffness, is due to the V-A and A-V CNTs dispersion type, respectively. Furthermore, it is revealed that by porosity coefficient enhancement, critical buckling load and consequently, stiffness reduces dramatically. Current paper results can be used in various high-tech industries as aerospace factories.

A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate

  • Mohammad Khorasani;Luca Lampani;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.633-644
    • /
    • 2023
  • Taking a look at the previously published papers, it is revealed that there is a porosity index limitation (around 0.35) for the mechanical behavior analysis of the functionally graded porous (FGP) structures. Over mentioned magnitude of the porosity index, the elastic modulus falls below zero for some parts of the structure thickness. Therefore, the current paper is presented to analyze the vibrational behavior of the FGP Timoshenko beams (FGPTBs) using a novel refined formulation regardless of the porosity index magnitude. The silica aerogel foundation and various hydrothermal loadings are assumed as the source of external forces. To obtain the FGPTB's properties, the power law is hired, and employing Hamilton's principle in conjunction with Navier's solution method, the governing equations are extracted and solved. In the end, the impact of the various variables as different beam materials, elastic foundation parameters, and porosity index is captured and displayed. It is revealed that changing hygrothermal loading from non-linear toward uniform configuration results in non-dimensional frequency and stiffness pushing up. Also, Al - Al2O3 as the material composition of the beam and the porosity presence with the O pattern, provide more rigidity in comparison with using other materials and other types of porosity dispersion. The presented computational model in this paper hopes to help add more accuracy to the structures' analysis in high-tech industries.