• Title/Summary/Keyword: dispersion agent

Search Result 206, Processing Time 0.027 seconds

Synthesis of Highly Dispersed Pd Nanocatalysts Through Control of Organic Ligands and Their Electrochemical Properties for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells (유기 리간드 제어를 통한 고분산 팔라듐 나노 촉매의 합성 및 음이온교환막 연료전지를 위한 산소 환원 반응 특성 분석)

  • Sung, Hukwang;Sharma, Monika;Jang, Jeonghee;Jung, Namgee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.633-639
    • /
    • 2018
  • In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.

Ni Nanoparticle-Graphene Oxide Composites for Speedy and Efficient Removal of Cr(VI) from Wastewater

  • Wang, Wan-Xia;Zhao, Dong-Lin;Wu, Chang-Nian;Chen, Yan;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.345-352
    • /
    • 2021
  • In this study, Ni nanoparticle supported by graphene oxide (GO) (Ni-GO) is successfully synthesized through hydrothermal synthesis and calcination, and Cr(VI) is extracted from aqueous solution. The morphology and structure of Ni-GO composites are characterized by scanning electron microscopy (SEM), trans mission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HRTEM) and XRD confirms the high dispersion of Ni nanoparticle after support by GO. Loading Ni on GO can obviously enhance the stability of Ni-GO composites. It can be calculated from TGA that the mass percentage of Ni is about 60.67 %. The effects of initial pH and reaction time on Cr(VI) removal ability of Ni-GO are investigated. The results indicate that the removal efficiency of Cr(VI) is greater than that of bared GO. Ni-GO shows fast removal capacity for Cr(VI) (<25 min) with high removal efficiency. Dynamic experiments show that the removal process conforms to the quasi-second order model of adsorption, which indicates that the rate control step of the removal process is chemical adsorption. The removal capacity increases with the increase of temperature, indicating that the reaction of Cr(VI) on Ni-GO composites is endothermic and spontaneous. Combined with tests and characterization, the mechanism of Cr(VI) removal by rapidly adsorption on the surface of Ni-GO and reduction by Ni nanoparticle is investigated. The above results show that Ni-GO can be used as a potential remediation agent for Cr(VI)-contaminated groundwater.

Study on ZnO Nanoparticle Dispersions in Test Media Including Natural Organic Matter for Ecotoxicological Assessment (천연유기물을 포함한 산화아연 나노입자 분산배지의 생태독성평가 적용성 연구)

  • Park, Sun-Young;Kim, Kyung-tae;Shin, Yu-jin;Kim, Ji-eun;Lee, Jae-woo;Jo, Eunhye;Sung, Hwa kyung;Kim, Pil-je;Choi, Kyung-hee;Eom, Ig-chun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.634-640
    • /
    • 2017
  • Toxicity and fate assessment is necessary in the evaluation of the environmental, health and safety risks of engineered nanomaaterials (ENMs). Therefore, in order to ensure the reproducibility, reliability and relevance of ENMs toxicity results, stable and monomodal dispersion protocols in toxicity test media are needed. Zinc oxide nanoparticles (nZnO) are widely used in various products such as cosmetic products, paper, paints etc. In this study, nZnO dispersions in ecotoxicity test media were produced by following a series of steps of modified National Institute of Standards and Technology (NIST) Special publication 1200-5. In addition, natural organic matter (humic acid (HA)) was used as a stabilizing agent to disperse nZnO in the test media. The hydrodynamic diameters (HDD) of the nZnO in dispersion ranged between 150 and 200 nm according to the dynamic light scattering (DLS) measurement. Based on these dispersions in ecotoxicity test using ecological species (Oryzias latipes, Daphnia magna, Pseudokirchneriella subcapitata and Chironomusus riparius), dispersion protocol was found to have a considerable potential in ecotoxicity test of ENMs.

Characteristics of Biological Agent and relavent case study (생물무기 특성과 사례연구)

  • Park, Minwoo;Kim, Hwami;Choi, Yeonhwa;Kim, Jusim
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.442-454
    • /
    • 2017
  • Biological weapon is manipulated and produced from microorganisms such as bacteria, virus, rickettsia, fungi etc. It is classified as one of the Weapons of Mass Destruction (WMD) along with chemical weapon and radiological weapon. Biological weapon has a number of operational advantages over the other WMDs including ease of development and production, low cost and possibility of covert dissemination. In this study we analyze the history of biological weapon's development and the existing biological threats. Then, we predict the social impact of biological attack based on the physical properties of biological agent and infection mechanisms. By analyzing the recognition, dispersion pattern of agents, characteristics of the diseases in the biological weapon related historical events such as Sverdlovsk anthrax accident, 2001 anthrax attack, we found out some of the facts that biological attack would not likely to be recognized rapidly, produce large number of the exposed, increase number of paients who suffed from severe respiratory illness. It would lead the public health and medical service providers to be struggled with hugh burden. Base on the facts that we found from this case study, we suggested the main capabilities of public health required to respond to bioterrorism event efficiently. Syndromic surveillance and other reporting system need to be operated effeciently so that any suspicious event should be detected promptly. the pathogen which suspected to be used should be identified through laboratory diagnostic system. It is critical for the public health agency to define potentially exposed population under close cooperation with law enforcement agencies. Lastly, massive prophylaxis should be provided rapidly to the people at need by operating human and material resources effeciently. If those capacities of public health are consistantly fortified we would be able to deal with threat of bioterrorism successfully.

A Study on the Peel Strength of Silane-treated Silicas-filled Epoxy Adhesives (실란처리 되어진 실리카가 첨가된 에폭시 접착제의 접착박리강도에 관한 연구)

  • Choi, Bo-Kyung;Kim, Hong-Gun;Seo, Min-Kang;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.520-525
    • /
    • 2014
  • In this paper, the effect of silane-treated silicas and epoxidized soybean oil (ESBO) addition on adhesion properties of silicas-filled epoxy adhesives was examined. The silicas were treated by ${\gamma}$-methacryloxy propyltrimethoxy silane (MPS), ${\gamma}$-glycidoxy propyl trimethoxy silane (GPS), and ${\gamma}$-mercapto propyl trimethoxy silane (MCPS). Surface and structural properties of the adhesives were determined by using scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The t-peel strength of the adhesives was estimated using the universal testing machine (UTM). And, the equilibrium spreading pressure, surface free energy, and specific surface area were investigated by BET methods with $N_2$/77 K adsorption. As a result, the peel strength of the adhesives was increased in the presence of silane-treated silicas in the adhesives compared to that of untreated silicas. This result indicated that the silane coupling agent played an important role in improving the dispersion of silicas in epoxy adhesives. And, the adhesives treated by MCPS were superior to the others in adhesion.

Preparation and Properties of Polyurethane Dispersions with Aromatic/Aliphatic Mixed Diisocyanate (방향족/지방족 혼합 Diisocyanate를 포함하는 Polyurethane 분산체의 제조와 성질)

  • Kim, Hyoung Sug;Noh, Si Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.258-265
    • /
    • 2009
  • An anionic polyurethane dispersions (PUDs) were synthesized from the poly (tetramethylene glycol) (PTMG, Mw = 2000 g/mol), mixed isocyanate of dicyclohexylmethane-4,4'-diisocyanate $(H_{12}-MDI)$ and 4,4'-diphenylmethane diisocyanate (MDI), and dimethylol propionic acid (DMPA) as anionic site, following a prepolymer mixing process. Triethylamine (TEA) was used as a neutralization agent and the ethylenediamine (EDA) as the chain extender of the prepolymer. The effects of the DMPA molar ratio and aromatic diisocyanate content in the mixed isocyanate on the particle size and viscosity of PUD were studied. Also, the mechanical and thermal properties of the PUD cast films were discussed according to the molar ratio of DMPA and aromatic isocyanate content. It was found that the particle size and the viscosity of an anionic PUD decreased with increasing DMPA molar ratio but increased with increasing aromatic isocyanate (MDI) content in the mixed isocyanate at the constant DMPA content. Tensile strength of the PUD cast films increased and elongation at break decreased with increasing DMPA content at the constant mixed isocyanate molar ratios. In thermal degradation temperature of PUD cast films, the effect of DMPA contents was great but the effect of aromatic isocyanate contents at the low DMPA content was very slight respectively.

Benzyl Alcohol Oxidation over H5PMo10V2O40 Catalyst Chemically Immobilized on Sulfur-containing Mesoporous Carbon (황이 포함된 중형기공성 탄소에 화학적으로 고정화된 H5PMo10V2O40 촉매 상에서 Benzyl Alcohol 산화반응)

  • Gim, Min Yeong;Kang, Tae Hun;Choi, Jung Ho;Song, In Kyu
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.419-424
    • /
    • 2016
  • $H_5PMo_{10}V_2O_{40}$ ($PMo_{10}V_2$) catalyst chemically immobilized on sulfur-containing mesoporous carbon (S-MC) was prepared, and it was applied to the benzyl alcohol oxidation reaction. S-MC was synthesized by a templating method using SBA-15 and p-toluenesulfonic acid as a templating agent and a carbon precursor, respectively. S-MC was then modified to have a positive charge, and thus, to provide sites for the immobilization of $PMo_{10}V_2$. By taking advantage of the overall negative charge of $[PMo_{10}V_2O4_{40}]^{5-}$, $PMo_{10}V_2$ catalyst was immobilized on the S-MC support as a charge matching component. It was revealed that $PMo_{10}V_2$ species were finely and molecularly dispersed on the S-MC via chemical immobilization. In the vapor-phase oxidation of benzyl alcohol, $PMo_{10}V_2$/S-MC catalyst showed higher conversion of benzyl alcohol and higher yield for benzaldehyde and benzoic acid than unsupported $PMo_{10}V_2$ catalyst. The enhanced catalytic performance of $PMo_{10}V_2$/S-MC was due to fine dispersion of $PMo_{10}V_2$ species on the S-MC via chemical immobilization.

Type of Political Influences of UCC (UCC의 정치적 영향 유형)

  • Jang, Seong-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.294-300
    • /
    • 2010
  • With the development of media technology, UCC actively working through the medium of the Net, the Internet space, which can influence politics instead of TV is drawing attention as the new leading media. As the one-sided media influence of TV is dwindling in the times of the Internet, the hegemony of the media is rapidly changing into UCC marked by two-way interaction. Especially, UCC has the characteristic that it has changed the people performing a role as the receptor of the media into the agent of enormous political influence as well as the freshness specific to its contents. This study was intended to investigate the types of diverse political influences of UCC in political practice as well as daily politics with a focus on the fact that it can newly project the world led by the media and their changes and exercise strong power in changing the society. Therefore, it attempted to investigate the political influence and ripple effect that UCC can exert by attempting to analyze what political influence UCC can exercise at diverse political situations including election. As a result, UCC led to four situations such as incentive-exploding type, issue-leading type, dispersion-switching type, direction-obeying type. This can be said to lead to the positive effect at the political field, such as implementing direct democracy through digital technology.

Influence of Activation of Mesoporous Carbon on Electrochemical Behaviors of Pt-Ru Nanoparticle Catalysts for PEMFCs (고분자 전해질 연료전지 백금-루테늄 나노입자 촉매의 전기화학적 거동에 대한 중형기공 탄소 지지체의 활성화 효과)

  • Kim, Byung-Ju;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • In this work, mesoporous carbons (CMK-3) were prepared by a conventional templating method using mesoporous silica (SBA-15) for using catalyst supports in polymer electrolyte membrane fuel cells (PEMFCs). The CMK-3 were chemically activated to obtain high surface area and small pore diameter with different potassium hydroxide (KOH) amounts, i.e., 0, 1, 3, and 4 g as an activating agent. And then Pt-Ru was deposited onto activated CMK-3 (K-CMK-3) by a chemical reduction method. The characteristics of Pt-Ru catalysts deposited onto K-CMK-3 were determined by surface area and pore size analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and inductive coupled plasma-mass spectrometry (ICP-MS). The electrochemical properties of Pt-Ru/K-CMK-3 catalysts were also analyzed by cyclic voltammetry (CV). From the results, the K3g-CMK-3 carbon supports activated with 3 g KOH showed the highest specific surface areas. In addition, the K3g-CMK-3 led to uniform dispersion of Pt-Ru onto K-CMK-3, resulted in the enhancement of elelctro-catalystic activity of Pt-Ru catalysts.

Swelling Ratio and Mechanical Properties of SBR/organoclay Nanocomposites according to the Mixing Temperature; using 3-Aminopropyltriethoxysilane as a Modifier and the Latex Method for Manufacturing (유기화제로 3-aminopropyltriethoxysilane 을 이용하여 라텍스법으로 제조된 SBR/organoclay 컴파운드의 혼련 온도에 따른 팽윤도 및 기계적 물성)

  • Kim, Wook-Soo;Park, Deuk-Joo;Kang, Yun-Hee;Ha, Ki-Ryong;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.112-121
    • /
    • 2010
  • In this study, styrene butadiene rubber(SBR)/organoclay nanocomposites were manufactured using the latex method with 3-aminopropyltriethoxysilane(APTES) as a modifier. The X-ray diffraction(XRD), transmission electron microscopy(TEM) images, Fourier transform infrared(FTIR) spectroscopy, swelling ratio and mechanical properties were measured in order to study the interaction between filler and rubber according to the mixing temperature in the internal mixer. In the case of SBR/APTES-MMT compounds, the dispersion of the silicates within the rubber matrix was enhanced, and thereby, the mechanical properties were improved. The characteristic bands of Si-O-C in APTES disappeared after hydrolysis reaction in the MMT-suspension solution and the peak of hydroxyl group was increased. Therefore the formation of chemical bonds between the hydroxyl group generated from APTES on the silicate surface and the ethoxy group of bis(triethoxysilylpropyl) tetrasulfide(TESPT) was possible. Consequently, the 300% modulus of SBR/APTES-MMT compounds was further improved in the case of using TESPT as a coupling agent. However, the silanization reaction between APTES and TESPT was not affected significantly according to the increase of mixing temperature in the internal mixer.