• Title/Summary/Keyword: disk laser

Search Result 198, Processing Time 0.032 seconds

Simulations of time dependent temperature distributions of Super-ROM disk structure using finite element method (유한요소법을 이용한 Super-ROM 디스크 구조의 열 분포 해석)

  • Ahn, Duck-Won;You, Chun-Yeol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.132-136
    • /
    • 2005
  • It is widely accepted that the reading mechanism of Super-RENS(super-resolution near field structure) and Super-ROM(super-resolution read only memory) is closely related with non-linear temperature dependent material properties such as refractive indices, phase change. Furthermore, the dynamic change of the temperature distribution also an essential part of reading mechanism of Super-RENS/ROM. Therefore, the knowledge of the temperature distribution as a function a time is one of the important keys to reveal the physics of reading mechanism in Super-RENS/ROM. We calculated time-dependent temperature distribution in a 3-dimensional Super-ROM disk structure when moving laser beam is irradiated. With a help of commercial software FEMLAB which employed finite element method, we simulated the temperature distribution of ROM structure whose pit diameter is 120-nm with 50-nm depth. Energy absorption by moving laser irradiation, time variations of heat transfer processes, heat fluxes, heat transfer ratios, and temperature distributions of the complicate 3-dimensional ROM structure have been obtained.

  • PDF

A Study on Measurement and Analysis of In-Plane Deformations by Using Laser Speckle Interferometry (I) (레이저 스페클 간섭법을 이용한 면내 변형 측정 및 해석에 대한 연구 (I))

  • 강영준;노경완;강형수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.121-129
    • /
    • 1998
  • In-plane ESPI(Electronic Speckle Pattern Interferometry) was devised to measure in-plane deformations and rotation of a specimen with laser in this study. ESPI is a optical measuring method to be able to measure the deformations of engineering components and materials in industrial fields. The conventional measuring methods of surface deformations such as the strain gauge have many demerits because they are contact and point-to-point measuring ones. But that ESPI is noncontact, nondestructive and whole field measuring method can overcome previous disadvantages. We used ESPI which is sensitive to in-plane displacement for measuring in-plane deformations of a disk. And the 4-frame phase shifting method was used for the quantitative analysis. First of all, the system calibration was done due to an in-plane rotation before getting deformations of a disk. Finally we showed good agreement between the experiment results and those of the FEA(Finite Element Analysis).

  • PDF

Characteristics of inner flow driven by a rotating disk in shroud (단일 회전원판을 포함하는 밀폐된 내부 유동장의 특성)

  • Kong, Dae-Wee;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.179-184
    • /
    • 2001
  • A shrouded rotating disk airflow has a simple figure on geometric basis, but has various and complicated forms of flow. This flow type can be applied to many turbo devices such as information storage device(optical disk). Circumferential velocity frequency in the middle plane between disk and shroud wall is measured using laser Doppler velocimeter. Solid body region of flow was founded when low Reynolds number relatively. Through the informations of the experimental results. we could examine the number and distribution of the vortices. When Reynolds number $3.80{\times}10^5$ there is a dominant frequency of which vortices number is 5.

  • PDF

Qualitative Noise Characteristics of Rotating Polygonal Disk Applied to Digital Printer Systems (디지털 프린터에 적용되는 회전 다각형 디스크의 소음특성)

  • Jo, Jun-Hyeon;Kim, Hyeong-Chae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1425-1429
    • /
    • 2007
  • Consumer's product selection measures are being shifted from the units' operational performance to overall performance. Low noise, low vibration, and low power consumption rate, etc. which used to be additional quality indices, now become vital performance factors. Especially, noise and vibration characteristics are being considered as equivalent to/or even more critical than operational performance in certain products such as office machines and home entertainment systems, which share the same space with human being's daily life. Therefore, noise reduction and sound quality improvement technology becomes an inevitable design issue for those applications. Qualitative noise characteristics of rotating polygonal disk applied to digital printer systems are presented. Overall sound pressure level change and tonal noise variation with respect to the geometrical properties of polygonal disk, operational speed, and others are briefly discussed based on experimental results.

  • PDF

A Study on the Torsional Vibration Measurement of the Horizontal Shaft with Disks (단을 가진 수평축의 비틀림진동 측정에 관한 연구)

  • 박일수;안찬우;김중완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.3-8
    • /
    • 1997
  • This parer was presented for the experimental results of torsional vibrations of the horizontal rotating shaft with three disks. The torsional vibrations meter used is a laser system for non-contact measurement of torsional angular vibration velocity and torsional angular vibration displacement. The distance between the disks war changed; the one that had 76mm of disk distance war called basic model, and another that had 106mm of disk distance wide model, and other that had 46mm of disk distance narrow model. In each model, outer diameter of disk was 40mm. And 45mm, or 50mm was also used to extend the effective range of frequencies. The angula vibration displacement and the angular vibration velocity in its torsional vibration were measured to obtain the stable and the unstable regions.

  • PDF

Qualitative Noise Characteristics of Rotating Polygonal Disk Applied to Digital Printer Systems (디지털 프린터에 적용되는 회전 다각형 디스크의 소음특성)

  • Jo, Jun-Hyeon;Kim, Hyeong-Chae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.606-611
    • /
    • 2008
  • Consumer's product selection measures are being shifted from the units' operational performance to overall performance. Low noise, low vibration, and low power consumption rate, etc. which used to be additional quality indices, now become vital performance factors. Especially, noise and vibration characteristics are being considered as equivalent to/or even more critical than operational performance in certain products such as office machines and home entertainment systems, which share the same space with human being's daily life. Therefore, noise reduction and sound quality improvement technology becomes an inevitable design issue for those applications. Qualitative noise characteristics of rotating polygonal disk applied to digital printer systems are presented. Overall sound pressure level change and tonal noise variation with respect to the geometrical properties of polygonal disk, operational speed, and others are briefly discussed based on experimental results.

Design And Optimization Of Actuator For Micro Optical Disk Drive Using Response Surface Methodology (반응표면법을 이용한 초소형 광디스크 드라이브 구동기의 최적화 및 디자인)

  • 우기석;이동주;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.755-761
    • /
    • 2003
  • Recently, the development of mobile devices demands information storage systems to use micro drive devices and cheap media. These should have several characteristics, for example, the subminiature of size, the robustness of shock, the minimum of cost and power consumption, and the removability of multiple applications. A conventional optical disk drive is more suitable for these specifications than the others. The optical storage system of the new generation to use a blue laser and a high numerical aperture (NA) is the perfect candidate for micro optical disk drives. In this paper, the micro actuator that can be applied to a micro optical disk drive is designed by response surface methodology to use a structural analysis and an electro-magnetic analysis. Based on above results, the coarse actuator and fine actuator are designed and improved from the point of view of the size and the power. Consequently, the designs of a micro actuator are proposed through these courses.

  • PDF

Laser Line Welder for Continuous Operation of Cold-rolled Steel Coil (초극박재 냉연코일의 연속조업을 위한 Laser Line Welder)

  • Choi, Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • A laser line welder using a solid-state laser (Yb:YAG) has been manufactured for joining ultra-thin cold-rolled steel coils in steelworks. The coils to be welded primarily range from 0.15 to 0.3 mm in thickness and 800 to 1,100 mm in width. Because the steel plate is extremely thin, it is very important to control the stop positions of the clamp at cutting and welding points. In this study, both hydraulic proportional control valves and LVDT sensor embedded cylinders were used to precisely control and monitor the positions of clamps with complementary stoppers. As a result, the positions could be controlled within an error of ${\pm}30{\mu}m$. Erichsen cupping tests on the welded joints show that the Erichsen index ranges from 4.4 to 4.6 mm. Furthermore, the tensile strength of welding points is comparable to that of the base metal.

Nano-Wear and Friction of Magnetic Recording Hard Disk by Contact Start/Stop Test

  • Kim, Woo Seok;Hwang, Pyung;Kim, Jang-Kyo
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.12-20
    • /
    • 2000
  • Nano-wear and friction of carbon overcoated laser-textured and mechanically-textured computer hard disk were characterised after contact start/stop (CSS) wear test. Various analytical and mechanical testing techniques were employed to study the changes in topography, roughness, chemical elements, mechanical properties and friction characteristics of the coating arising from the contact start/stop wear test These techniques include: the atomic force microscopy (AFM), the continuous nano-indentation test, the nano-scratch test, the time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and the auger electron spectroscopy (AES). It was shown that the surface roughness of the laser-textured (LT) bump and mechanically textured (MT) Bone was reduced approximately am and 7nm, respectively, after the CSS wear test. The elastic modulus and hardness values increased after the CSS test, indicating straining hardening of the top coating layer, A critical load was also identified fer adhesion failure between the magnetic layer and the Ni-P layer, The TOF-SIMS analysis also revealed some reduction in the intensity of C and $C_2$$F_59$, confirming the wear of lubricant elements on the coating surface.

  • PDF