The soil creep, primarily caused by earthquakes and torrential rainfall events, has widely occurred across the country. The Korea Forest Service attempted to quantify the soil creep susceptible areas using a discriminant value table to prevent or mitigate casualties and/or property damages in advance. With the advent of advanced computer technologies, machine learning-based classification models have been employed for managing mountainous disasters, such as landslides and debris flows. This study aims to quantify the soil creep susceptibility using several classifiers, namely the k-Nearest Neighbor (k-NN), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM) models. To develop the classification models, we downscaled 292 data from 4,618 field survey data. About 70% of the selected data were used for training, with the remaining 30% used for model testing. The developed models have the classification accuracy of 0.727 for k-NN, 0.750 for NB, 0.807 for RF, and 0.750 for SVM against test datasets representing 30% of the total data. Furthermore, we estimated Cohen's Kappa index as 0.534, 0.580, 0.673, and 0.585, with AUC values of 0.872, 0.912, 0.943, and 0.834, respectively. The machine learning-based classifications for soil creep susceptibility were RF, NB, SVM, and k-NN in that order. Our findings indicate that the machine learning classifiers can provide valuable information in establishing and implementing natural disaster management plans in mountainous areas.
Corporate bankruptcy can cause great losses not only to stakeholders but also to many related sectors in society. Through the economic crises, bankruptcy have increased and bankruptcy prediction models have become more and more important. Therefore, corporate bankruptcy has been regarded as one of the major topics of research in business management. Also, many studies in the industry are in progress and important. Previous studies attempted to utilize various methodologies to improve the bankruptcy prediction accuracy and to resolve the overfitting problem, such as Multivariate Discriminant Analysis (MDA), Generalized Linear Model (GLM). These methods are based on statistics. Recently, researchers have used machine learning methodologies such as Support Vector Machine (SVM), Artificial Neural Network (ANN). Furthermore, fuzzy theory and genetic algorithms were used. Because of this change, many of bankruptcy models are developed. Also, performance has been improved. In general, the company's financial and accounting information will change over time. Likewise, the market situation also changes, so there are many difficulties in predicting bankruptcy only with information at a certain point in time. However, even though traditional research has problems that don't take into account the time effect, dynamic model has not been studied much. When we ignore the time effect, we get the biased results. So the static model may not be suitable for predicting bankruptcy. Thus, using the dynamic model, there is a possibility that bankruptcy prediction model is improved. In this paper, we propose RNN (Recurrent Neural Network) which is one of the deep learning methodologies. The RNN learns time series data and the performance is known to be good. Prior to experiment, we selected non-financial firms listed on the KOSPI, KOSDAQ and KONEX markets from 2010 to 2016 for the estimation of the bankruptcy prediction model and the comparison of forecasting performance. In order to prevent a mistake of predicting bankruptcy by using the financial information already reflected in the deterioration of the financial condition of the company, the financial information was collected with a lag of two years, and the default period was defined from January to December of the year. Then we defined the bankruptcy. The bankruptcy we defined is the abolition of the listing due to sluggish earnings. We confirmed abolition of the list at KIND that is corporate stock information website. Then we selected variables at previous papers. The first set of variables are Z-score variables. These variables have become traditional variables in predicting bankruptcy. The second set of variables are dynamic variable set. Finally we selected 240 normal companies and 226 bankrupt companies at the first variable set. Likewise, we selected 229 normal companies and 226 bankrupt companies at the second variable set. We created a model that reflects dynamic changes in time-series financial data and by comparing the suggested model with the analysis of existing bankruptcy predictive models, we found that the suggested model could help to improve the accuracy of bankruptcy predictions. We used financial data in KIS Value (Financial database) and selected Multivariate Discriminant Analysis (MDA), Generalized Linear Model called logistic regression (GLM), Support Vector Machine (SVM), Artificial Neural Network (ANN) model as benchmark. The result of the experiment proved that RNN's performance was better than comparative model. The accuracy of RNN was high in both sets of variables and the Area Under the Curve (AUC) value was also high. Also when we saw the hit-ratio table, the ratio of RNNs that predicted a poor company to be bankrupt was higher than that of other comparative models. However the limitation of this paper is that an overfitting problem occurs during RNN learning. But we expect to be able to solve the overfitting problem by selecting more learning data and appropriate variables. From these result, it is expected that this research will contribute to the development of a bankruptcy prediction by proposing a new dynamic model.
This study identified motives for writing apparel product reviews in online stores, and determined what motives increase the behavior of writing reviews. It also classified store customers based on the type of writing motives, and clarified the characteristics of internet purchase behavior and of a demographic profile. Data were collected from 252 females aged 20s' and 30s' who have experience of reading and writing reviews on online shopping. The five types of writing motives were altruistic information sharing, remedying of a grievance and vengeance, economic incentives, helping new product development, and the expression of satisfaction feelings. Among five motives, altruistic information sharing, economic incentives, and helping new product development stimulate writing reviews. Store customers who write reviews were classified into three groups based on their writing motive types: Other consumer advocates(29.8%), self-interested shoppers(40.5%) and shoppers with moderate motives(29.8%). There were significant differences among three groups in writing behavior (the frequency of writing reviews, writing intent of reviews, duration of writing reviews, and frequency of online shopping) and age. Based on results, managerial implications were suggested. Long Abstract : The purpose of present study is to identify the types of writing motives on online shopping, and to clarify the motives affecting the behavior of writing reviews. This study also classifies online shoppers based on the motive types, and identifies the characteristics of the classified groups in terms of writing behavior, frequency of online shopping, and demographics. Use and Gratification Theory was adopted in this study. Qualitative research (focus group interview) and quantitative research were used. Korean women(20 to 39 years old) who reported experience with purchasing clothing online, and reading and writing reviews were selected as samples(n=252). Most of the respondents were relatively young (20-34yrs., 86.1%,), single (61.1%), employed(61.1%) and residents living in big cities(50.9%). About 69.8% of respondents read and 40.5% write apparel reviews frequently or very frequently. 24.6% of the respondents indicated an "average" in their writing frequency. Based on the qualitative result of focus group interviews and previous studies on motives for online community activities, measurement items of motives for writing after-purchase reviews were developed. All items were used a five-point Likert scale with endpoints 1 (strongly disagree) and 5 (strongly agree). The degree of writing behavior was measured by items concerning experience of writing reviews, frequency of writing reviews, amount of writing reviews, and intention of writing reviews. A five-point scale(strongly disagree-strongly agree) was employed. SPSS 18.0 was used for exploratory factor analysis, K-means cluster analysis, one-way ANOVA(Scheffe test) and ${\chi}^2$-test. Confirmatory factor analysis and path model analysis were conducted by AMOS 18.0. By conducting principal components factor analysis (varimax rotation, extracting factors with eigenvalues above 1.0) on the measurement items, five factors were identified: Altruistic information sharing, remedying of a grievance and vengeance, economic incentives, helping new product development, and expression of satisfaction feelings(see Table 1). The measurement model including these final items was analyzed by confirmatory factor analysis. The measurement model had good fit indices(GFI=.918, AGFI=.884, RMR=.070, RMSEA=.054, TLI=.941) except for the probability value associated with the ${\chi}^2$ test(${\chi}^2$=189.078, df=109, p=.00). Convergent validities of all variables were confirmed using composite reliability. All SMC values were found to be lower than AVEs confirming discriminant validity. The path model's goodness-of-fit was greater than the recommended limits based on several indices(GFI=.905, AGFI=.872, RMR=.070, RMSEA=.052, TLI=.935; ${\chi}^2$=260.433, df=155, p=.00). Table 2 shows that motives of altruistic information sharing, economic incentives and helping new product development significantly increased the degree of writing product reviews of online shopping. In particular, the effect of altruistic information sharing and pursuit of economic incentives on the behavior of writing reviews were larger than the effect of helping new product development. As shown in table 3, online store shoppers were classified into three groups: Other consumer advocates (29.8%), self-interested shoppers (40.5%), and moderate shoppers (29.8%). There were significant differences among the three groups in the degree of writing reviews (experience of writing reviews, frequency of writing reviews, amount of writing reviews, intention of writing reviews, and duration of writing reviews, frequency of online shopping) and age. For five aspects of writing behavior, the group of other consumer advocates who is mainly comprised of 20s had higher scores than the other two groups. There were not any significant differences between self-interested group and moderate group regarding writing behavior and demographics.
Nowadays, it is common that most consumers are purchasing goods in e-stores. The e-stores eager to attract, revisit, retain, and finally convert them into loyal customers. The e-store marketers have planned and executed numerous marketing efforts. As one of the marketing activities, e-store managers attempt to build web sites that meet customers' functional and psychological needs. A wide array of studies has been done to identify factors that could affect customers' response of web sites. Majority of studies were conducted to verify technology-related and functional variables of the website which facilitate transactions and enhance customer responses such as purchase intention and website loyalty. However, there has been little research on the external cues of website and psychological variables of consumer that could have positive influences on customer response. The purpose of this study is to investigate the influence of e-store personality on e-store loyalty through mediating variables such as e-store identification, e-store trust, and e-store engagement. The authors of this study develop the model and set up the six main hypotheses and a set of sub-hypotheses based on a literature review, shown in
. This model is composed of four paths such as dimensions of e-store personality${\rightarrow}$e-store identification, e-store identification${\rightarrow}$e-store loyalty, e-store identification ${\rightarrow}$e-store trust${\rightarrow}$e-store loyalty, and e-store identification${\rightarrow}$e-store engagement${\rightarrow}$e-store loyalty. II. Research Method Ladies under 30s were the respondents of this survey. Data were collected from January 20th to February 26th in 2010. A total of 200 questionnaires were distributed and 169 respondents were analysed finally to test hypotheses because 31 questionnaires had incorrect or missing responses. SPSS 12.0 and LISREL 7.0 program were used to test frequency, reliability, factor, and structural equation modeling analysis. III. Result and Conclusion According to results from factor analysis, eigen value was over 1.0 and items which were below 0.6 were deleted. Consequently, 9 factors(% of total variance is 72.011%) were searched. All Cronbach's ${\alpha}$ values are over the recommended level(${\alpha}$ > 0.7). The overall fit indices are acceptable such as ${\chi}^2$=2028.36(p=0.00), GFI=0.87, AGFI=0.82, CFI=0.81, IFI=0.92, RMR=0.075. All factor loadings were over the recommended level. As the result of discriminant validity check with chi-square difference test between paired constructs, each construct has good discriminant validity. The overall fit indices of final model are acceptable such as ${\chi}^2$=340.73(df=36, p=0.00), GFI=0.92, AGFI=0.81, CFI=0.91, IFI=0.91, RMR=0.085. As test results, 5 out of 6 hypotheses are supported because there are statistically significant casual relationships in structural equation model, shown in
. First of all, hypothesis 1 is partially supported because sub-hypothesis 1-1 and 1-2 are supported, whereas sub-hypothesis 1-3, 1-4, and 1-5 are rejected. Specifically, it reveals that warmth and sophistication dimensions in e-store personality have positive influence on e-store identification, however, activity, progressiveness, and strictness does not have any significant relationship on e-store identification. Secondly, hypothesis 2 was supported. Therefore, it can be said that e-store identification has a positive impact on e-store trust. Thirdly, hypothesis 3 is also supported. Hence, there is a positive relationship between e-store identification and e-store engagement. Fourthly, hypothesis 4 is supported too. e-store identification has a positive influence on e-store loyalty. Fifthly, hypothesis 5 is also accepted. This indicates that e-store trust is a precedent variable which positively affects e-store loyalty. Lastly, it reveals that e-store engagement has a positive impact on e-store loyalty. Therefore, hypothesis 6 is supported. The findings of the study imply that some dimensions of e-store personality have a positive influence on e-store identification, and that e-store identification has direct and indirect influence on e-store loyalty through e-store trust and e-store engagement positively. These results also suggest that the e-store identification in e-store personality is a precedent variable which positively affects e-store loyalty directly and indirectly through e-store trust and engagement as a mediating variable. Therefore, e-store marketers need to implement website strategy based on e-store personality, e-store identification, e-store trust, and e-store engagement to meet customers' psychological needs and enhance e-store loyalty. Finally, the limitations and future study directions based on this study are discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.