본 논문은 결정 트리(Decision tree) 구조를 기반으로 한 표정 인식 방법을 제안한다. ASM(Active Shape Model)과 LBP(Local Binary Pattern)를 통해, 표정 영상들의 국소 특징들을 추출한다. 국소 특징들로부터 표정들을 잘 분류할 수 있는 판별 특징(Discriminant feature)들을 추출하고, 그 판별 특징들은 모든 조합의 각 두 가지 표정들을 분류시킨다. 분류를 통해 얻어진 정인식의 합을 통해, 정인식 최대화 기반 국소 영역과 표정 조합을 결정한다. 이 가지 분류들을 종합하여, 결정 트리를 생성한다. 이 결정 트리 기반 표정 인식률은 약 84.7%로, 결정 트리를 고려하지 않은 방법보다, 더 좋은 인식 성능을 보였다.
VU, Giang Huong;NGUYEN, Chi Thi Kim;PHAM, Dang Van;TRAN, Diu Thi Phuong;VU, Toan Duc
유통과학연구
/
제20권10호
/
pp.61-66
/
2022
Purpose: Predicting the financial distress distribution of an enterprise is important to warn enterprises about their future. Predicting the possibility of financial distress helps companies have action plans to avoid the possibility of bankruptcy. In this study, the author conducted a forecast of the financial distress distribution of enterprises. Research design, data and methodology: The forecasting method is based on Logit and Discriminant analysis models. The data was collected from companies listed on Vietnam Stock Exchange from 2012 to 2020. In which there are both companies suffer from financial distress and non-financial distress. Results: The forecast analysis results show that the Logistic model has better predictability than the Discriminant analysis model. At the same time, the results also indicate three main factors affecting the financial distress of enterprises at all three research stages: (1) Liquidity, (2) Interest payment, and (3) firm size. In addition, at each stage, the impact of factors on financial distress differs. Conclusions: From the results of this study, the author also made several recommendations to help companies better control company operations to avoid falling into financial distress. Adjustments to current assets, debt, and company expansion considerations are the most important factors for companies.
The poppet valve had used every field area due to high quality of leakage property and response characteristic. But this valve still has terrible disadvantage that is self-exited vibration. This problem affects stability of total system and raises noise. The researcher tries to reduce that self-exited vibration when valve was designed. The stability discriminant is the typical study to improve the performance of the poppet valve. This paper concerns about stability discriminant that uses poppet valve with a drain orifice. At the first, the mathematical model is computed from poppet valve. After that, the limitation of stability is calculated that based on Nyquist criterion. At the final, the stability discriminant is selected in each condition and the graph that shows stability in the system is drown by dimensionless quantity.
This study explored determinants of family support that young renter households received to afford their housing costs. Microdata set of the 2014 Korea Housing Survey was used as secondary data for the study. Total 1,752,899 households headed by persons between 20 and 34 years of age and whose rental type was either Jeon-se or monthly rental with deposit in private rental units were selected as study subjects. For the data analysis, a series of discriminant analysis was conducted using IBM SPSS 21.0. Major findings were as follows. (1) Among the subjects, 28.2% were found to receive financial support from parents or other relatives. (2) To see the discriminant analysis results, a linear combination of seven household and housing characteristics (householder's gender, whether or not the householder worked in the previous week, whether or not the householders have a spouse, tenure type, structure type, location and deposit amount) could explain 44.6% of variance in young renter households' receipt of family support with a prediction accuracy of 77.2%. (3) To summarize the final discriminant model, Jeon-se renter households in location other than Incheon or Gyeonggi Province living in a unit in structure other than multifamily structure headed by younger householders that did not worked previous week or without spouse; with a greater deposit had the maximum tendency to receive family support to pay rental costs.
This study investigates how motivations, preferences, and past experiences vary by each hikers trail choice at the Mt.Keyryong National Park. The purpose of this study is to find out the factors influencing behavioral choice in the recreation areas, and establish the fundamental theory for the efficient management of the resource and visitors. For this study, we have collected 472 respondents by on-site self-administrated questionnaire from the hikers in the park. The collected data were analyzed by the descriptive statistics and the discriminant analysis. The motivations variable of hiking participation on mountain trail were categorized three types; close-nature, escapism, and physical improvement. The preferences for trail environment were classified as four categories by factor analysis; preference for nature, safety, use density, and facilities. In descriptive statistics, the study showed that the experienced hikers prefer natural trials and hikers who have preference for close-nature select longer and deeper forest trails. The results of discriminant analysis indicate that the level of past experience is the most affectable in classification of trail choice. Such variables as motivation for close-nature and preference for nature were also appeared as affecting factors on classification of trail choice. Two discriminant functions were available, and 90.5 percent of analysis sample were correctly classified. In the validity analysis, 89 percent of holdout sample were correctly classified. These hit ratios ensures an accuracy by Press Q test. The result of this study is to be useful knowledge of the choice of detailed use environments in the same recreation areas.
지역유형(area type)은 물류수요의 잠재력(potential)과 밀접한 관련이 있다. 물류계획분야에서 지역유형 변수는 특히 발생모형(generation model)에서 물류유입(freight attraction)을 설명하는 모형변수로, 또한 수송수단선택모형(mode choice model)의 모형변수로 포함되는 것이 최근 선진국의 물류계획 실무분야에서 일반적인 추세이다. 하지만 지역유형은 그 동안 개념적으로 명확히 정의되지 못하였으며, 분석모형의 맥락에서 지역유형의 계량적 추정을 다룬 선행연구는 거의 없었다고 할 수 있다. 이런 이유 때문에 중/장기 물류수요예측 및 물류계획에 있어서 인구와 고용의 변화가 지역유형을 어떻게 변화시킬지에 관한 장기적인 예측을 하는 것이 어려웠다. 따라서 본 연구는 물류시설 SOC사업의 성공적 추진을 위하여 물류수요예측의 신뢰수준을 제고하는 데 있어 꼭 필요하고 시급한 연구로서 지역유형(area type)을 고려한 물류수요의 잠재력(potential)분석 방법을 제시하였다.
This study was conducted to investigate the predictors of hospital bankruptcy in Korea and to examine the predictive power for 3 types of statistical models of hospital bankruptcy. Data on 17 financial and 4 non-financial indicators of 30 bankrupt and 30 profitable hospitals in 1. 2, and 3 years before bankruptcy were obtained from the hospital performance databank of Korea Institute of Health Services Management. Significant variables were identified through mean comparison of each indicator between bankrupt and profitable hospitals, and the predictive power of statistical models of hospital bankruptcy were compared. The major findings are as follows. 1. Nine out of 21 indicators - fixed ratio, quick ratio, operating profit to total assets, operating profit to gross revenue, normal profit to total assets,normal profit to gross revenue, net profit to gross revenue, inventories turnrounds, and added value per adjusted patient - were found to be significantly predictitive variables in Logit and Probit models. 2. The predicdtive power of discriminant model of hospital bankruptcy in 1. 2, and 3 years before bankruptcy were 85.4, 79.0, and 83.8% respectively. With regard to the predictive power of the Logit model of hospital bankruptcy, they were 82.3, 75.8, and 80.6% respectively, and of the Probit model. 87.1. 80.6, and 88.7% respectively. 3. The predictive power of the Probit model of hospital bankruptcy is better than the other two predictive models.
본 연구는 시내버스 운전자의 실제 운행기록 정보를 토대로 사고발생 가능성을 내포한 운전자를 판단할 수 있는 모형개발을 목적으로 하였다. 본 연구를 위하여 사고발생 운전자 및 사고 미발생 운전자의 실제 운행기록 정보에서 교통사고와 관련한 유의변수를 도출하는 한편, 판별분석(Discriminant Analysis) 및 로지스틱회귀분석(Logistic Regression Analysis)을 적용하여 개발된 분류모형에 대한 모형간 정확도를 비교하였다. 또한, 개발된 모형을 다른 운전자들의 운행기록자료에 적용하여 모형의 정확도를 검증하였다. 사고발생 가능성을 내포한 운전자 분류모형을 개발한 결과 감속도($X_{deceleration}$) 및 우측방향 가속도($Y_{right}$)가 동시에 작용할 때 이 변수가 사고발생 운전자 분류의 최적 요인변수로 도출되었으며, 판별분석에 의한 예측모형은 최대 62.8%, 로지스틱회귀분석에 의한 예측모형은 최대 76.7%의 비율로 사고 발생 운전자 분류가 가능한 것으로 나타났다. 또한, 모형 예측력에 대한 검증결과 84.1%의 적중률을 보이는 것으로 나타났다.
본 논문은 통계 기법인 판별 분석 함수를 이용하여 효율적으로 3차원 모델을 검색하는 시스템을 구현하였다. 제안한 방법은 판별분석 함수를 이용하여 색인으로 검색하는 기법으로, 색인의 생성은 Osada의 D2방법에 의해 추출된 128개의 특징벡터에 통계치(범위, 최소값, 평균, 표준편차, 왜도, 척도)를 변수로 판별분석 함수의 값을 색인 값으로 생성하였다. 쿼리 모델 검색 시 1차 검색으로 쿼리와 저장된 클래스(동종의 모델 그룹)의 색인을 비교하여 상위 2%이내(98% 이상)의 클래스를 추출하여 추출된 클래스에 속하는 모델만을 검색하였다. 이 방법은 검색시간을 단축시키는 효율적인 검색 기법임을 구현을 통해 알 수 있었다. 제안한 방법은 기존의 방법(Osada)보다 3차원 모델 검색 시간을 57%로 단축시켰으며, 쿼리 모델 검색 시 유사모델이 최초로 발견되는 정확도(pecision)가 0.362로 기존의 방법보다 44.8%의 효율이 있었음을 알 수 있었다.
본 연구의 목적은 토지자원의 유효한 개발과 관리를 위해 원격탐사 자료 및 지상자료를 이용하여 토지피복(이용)의 예측 모형을 정립하고 실제로 제주도 지역에 적용하여 그 실증을 거치는 것이었다. 본 모형은 계절분석(multi-date processing)및 다중 분석(multi-file proces-sing)기법을 채택하고 Markov의 확률 이전 계산법 및 판별 함수(discriminant function)계산법으로 부터 합성 출현시킨 공간적/시간적 토지 이용 투영방법을 채택하였다. 판별 함수 계산법은 토지피복(이용)변화상의 최다 경향치를 산출 하기 위해 제주도 경관 평면(Iandscape plane)전지역의 각 화소(pixel)에 적용되고, 확율 이전 계산법은 특정 미래 시간 간극상에서 상이한 토지피복(이용)으로 변화하는 이들 화소의 수량을 결정한다. 본합성 모형은 이렇게 토지피복 변화상(공간적)과 그 화소의 수량(정량적)을 결합하여 경관 평면상에서 미래의 토지피복 예측을 가능케 하는 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.