• Title/Summary/Keyword: discriminant feature

Search Result 200, Processing Time 0.024 seconds

Comparative Analysis of Dimensionality Reduction Techniques for Advanced Ransomware Detection with Machine Learning (기계학습 기반 랜섬웨어 공격 탐지를 위한 효과적인 특성 추출기법 비교분석)

  • Kim Han Seok;Lee Soo Jin
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.117-123
    • /
    • 2023
  • To detect advanced ransomware attacks with machine learning-based models, the classification model must train learning data with high-dimensional feature space. And in this case, a 'curse of dimension' phenomenon is likely to occur. Therefore, dimensionality reduction of features must be preceded in order to increase the accuracy of the learning model and improve the execution speed while avoiding the 'curse of dimension' phenomenon. In this paper, we conducted classification of ransomware by applying three machine learning models and two feature extraction techniques to two datasets with extremely different dimensions of feature space. As a result of the experiment, the feature dimensionality reduction techniques did not significantly affect the performance improvement in binary classification, and it was the same even when the dimension of featurespace was small in multi-class clasification. However, when the dataset had high-dimensional feature space, LDA(Linear Discriminant Analysis) showed quite excellent performance.

A Study on Feature Projection Methods for a Real-Time EMG Pattern Recognition (실시간 근전도 패턴인식을 위한 특징투영 기법에 관한 연구)

  • Chu, Jun-Uk;Kim, Shin-Ki;Mun, Mu-Seong;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.935-944
    • /
    • 2006
  • EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.

A Facial Feature Area Extraction Method for Improving Face Recognition Rate in Camera Image (일반 카메라 영상에서의 얼굴 인식률 향상을 위한 얼굴 특징 영역 추출 방법)

  • Kim, Seong-Hoon;Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.251-260
    • /
    • 2016
  • Face recognition is a technology to extract feature from a facial image, learn the features through various algorithms, and recognize a person by comparing the learned data with feature of a new facial image. Especially, in order to improve the rate of face recognition, face recognition requires various processing methods. In the training stage of face recognition, feature should be extracted from a facial image. As for the existing method of extracting facial feature, linear discriminant analysis (LDA) is being mainly used. The LDA method is to express a facial image with dots on the high-dimensional space, and extract facial feature to distinguish a person by analyzing the class information and the distribution of dots. As the position of a dot is determined by pixel values of a facial image on the high-dimensional space, if unnecessary areas or frequently changing areas are included on a facial image, incorrect facial feature could be extracted by LDA. Especially, if a camera image is used for face recognition, the size of a face could vary with the distance between the face and the camera, deteriorating the rate of face recognition. Thus, in order to solve this problem, this paper detected a facial area by using a camera, removed unnecessary areas using the facial feature area calculated via a Gabor filter, and normalized the size of the facial area. Facial feature were extracted through LDA using the normalized facial image and were learned through the artificial neural network for face recognition. As a result, it was possible to improve the rate of face recognition by approx. 13% compared to the existing face recognition method including unnecessary areas.

Detection of Pathological Voice Using Linear Discriminant Analysis

  • Lee, Ji-Yeoun;Jeong, Sang-Bae;Choi, Hong-Shik;Hahn, Min-Soo
    • MALSORI
    • /
    • no.64
    • /
    • pp.77-88
    • /
    • 2007
  • Nowadays, mel-frequency cesptral coefficients (MFCCs) and Gaussian mixture models (GMMs) are used for the pathological voice detection. This paper suggests a method to improve the performance of the pathological/normal voice classification based on the MFCC-based GMM. We analyze the characteristics of the mel frequency-based filterbank energies using the fisher discriminant ratio (FDR). And the feature vectors through the linear discriminant analysis (LDA) transformation of the filterbank energies (FBE) and the MFCCs are implemented. An accuracy is measured by the GMM classifier. This paper shows that the FBE LDA-based GMM is a sufficiently distinct method for the pathological/normal voice classification, with a 96.6% classification performance rate. The proposed method shows better performance than the MFCC-based GMM with noticeable improvement of 54.05% in terms of error reduction.

  • PDF

Linear Discriminant Clustering in Pattern Recognition

  • Sun, Zhaojia;Choi, Mi-Seon;Kim, Young-Kuk
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.717-718
    • /
    • 2008
  • Fisher Linear Discriminant(FLD) is a sample and intuitive linear feature extraction method in pattern recognition. But in some special cases, such as un-separable case, one class data dispersed into several clustering case, FLD doesn't work well. In this paper, a new discriminant named K-means Fisher Linear Discriminant, which combines FLD with K-means clustering is proposed. It could deal with this case efficiently, not only possess FLD's global-view merit, but also K-means' local-view property. Finally, the simulation results also demonstrate its advantage against K-means and FLD individually.

  • PDF

An Improved method of Two Stage Linear Discriminant Analysis

  • Chen, Yarui;Tao, Xin;Xiong, Congcong;Yang, Jucheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1243-1263
    • /
    • 2018
  • The two-stage linear discrimination analysis (TSLDA) is a feature extraction technique to solve the small size sample problem in the field of image recognition. The TSLDA has retained all subspace information of the between-class scatter and within-class scatter. However, the feature information in the four subspaces may not be entirely beneficial for classification, and the regularization procedure for eliminating singular metrics in TSLDA has higher time complexity. In order to address these drawbacks, this paper proposes an improved two-stage linear discriminant analysis (Improved TSLDA). The Improved TSLDA proposes a selection and compression method to extract superior feature information from the four subspaces to constitute optimal projection space, where it defines a single Fisher criterion to measure the importance of single feature vector. Meanwhile, Improved TSLDA also applies an approximation matrix method to eliminate the singular matrices and reduce its time complexity. This paper presents comparative experiments on five face databases and one handwritten digit database to validate the effectiveness of the Improved TSLDA.

An Adaptive Face Recognition System Based on a Novel Incremental Kernel Nonparametric Discriminant Analysis

  • SOULA, Arbia;SAID, Salma BEN;KSANTINI, Riadh;LACHIRI, Zied
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2129-2147
    • /
    • 2019
  • This paper introduces an adaptive face recognition method based on a Novel Incremental Kernel Nonparametric Discriminant Analysis (IKNDA) that is able to learn through time. More precisely, the IKNDA has the advantage of incrementally reducing data dimension, in a discriminative manner, as new samples are added asynchronously. Thus, it handles dynamic and large data in a better way. In order to perform face recognition effectively, we combine the Gabor features and the ordinal measures to extract the facial features that are coded across local parts, as visual primitives. The variegated ordinal measures are extraught from Gabor filtering responses. Then, the histogram of these primitives, across a variety of facial zones, is intermingled to procure a feature vector. This latter's dimension is slimmed down using PCA. Finally, the latter is treated as a facial vector input for the advanced IKNDA. A comparative evaluation of the IKNDA is performed for face recognition, besides, for other classification endeavors, in a decontextualized evaluation schemes. In such a scheme, we compare the IKNDA model to some relevant state-of-the-art incremental and batch discriminant models. Experimental results show that the IKNDA outperforms these discriminant models and is better tool to improve face recognition performance.

Design of Lazy Classifier based on Fuzzy k-Nearest Neighbors and Reconstruction Error (퍼지 k-Nearest Neighbors 와 Reconstruction Error 기반 Lazy Classifier 설계)

  • Roh, Seok-Beom;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2010
  • In this paper, we proposed a new lazy classifier with fuzzy k-nearest neighbors approach and feature selection which is based on reconstruction error. Reconstruction error is the performance index for locally linear reconstruction. When a new query point is given, fuzzy k-nearest neighbors approach defines the local area where the local classifier is available and assigns the weighting values to the data patterns which are involved within the local area. After defining the local area and assigning the weighting value, the feature selection is carried out to reduce the dimension of the feature space. When some features are selected in terms of the reconstruction error, the local classifier which is a sort of polynomial is developed using weighted least square estimation. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods such as standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees.

Discriminant analysis based on a calibration model (Calibration 모형을 이용한 판별분석)

  • 이석훈;박래현;복혜영
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.2
    • /
    • pp.261-274
    • /
    • 1997
  • Most of the data sets to which the conventional discriminant rules have been applied contain only those which belong to one and only one class among the classes of interest. However the extension of the bivalence to multivlaence like Fuzzy concepts strongly influence the traditional view that an object must belong to only class. Thus the goal of this paper is to develop new discriminant rules which can handle the data each object of which may belong to moer than two classes with certain degrees of belongings. A calibration model is used for the relationship between the feature vector of an object and the degree of belongings and a Bayesian inference is made with the Metropolis algorithm on the degree of belongings when a feature vector of an object whose membership is unknown is given. An evalution criterion is suggested for the rules developed in this paper and comparision study is carried using two training data sets.

  • PDF

Representation and Detection of Video Shot s Features for Emotional Events (감정에 관련된 비디오 셧의 특징 표현 및 검출)

  • Kang, Hang-Bong;Park, Hyun-Jae
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.53-62
    • /
    • 2004
  • The processing of emotional information is very important in Human-Computer Interaction (HCI). In particular, it is very important in video information processing to deal with a user's affection. To handle emotional information, it is necessary to represent meaningful features and detect them efficiently. Even though it is not an easy task to detect emotional events from low level features such as colour and motion, it is possible to detect them if we use statistical analysis like Linear Discriminant Analysis (LDA). In this paper, we propose a representation scheme for emotion-related features and a defection method. We experiment with extracted features from video to detect emotional events and obtain desirable results.