• Title/Summary/Keyword: discrete-element

Search Result 686, Processing Time 0.024 seconds

Analysis on Passenger Evacuation Flow from EMU using P*FLOW ($P^*FLOW_{(R)}$를 이용한 철도 차량에서의 승객 피난 해석)

  • Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.446-450
    • /
    • 2008
  • Urban transits of metropolises have been used by many citizens due to the merits of environment friendly traffic, mass transportation, safety and scheduled operation. It is very important to keep safety for the increased passengers. When the accidents as like fire occur, rapid evacuation from fire site is one of the most effective methods to decrease casualties. Furthermore, overseas buyers sometimes request the verification results of the passenger evacuation from rolling stock. In this study, algorithm for passenger flow analysis based on DEM(Discrete Element Method) is newly developed and made simulation program package. And, we applied it to the evacuation problem for urban transits. By using the developed program, we compared the simulation results of the effects of the location and size of door and elapsed time qualitatively and quantitatively.

  • PDF

Rheological Modeling of Nanoparticles in a Suspension with Shear Flow (전단 흐름을 갖는 서스펜션 내부 나노 입자의 유변학적 특성 연구)

  • Kim, Gu;Fukai, Jun;Hironaka, Shuji
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.445-452
    • /
    • 2019
  • Shear thickening is an intriguing phenomenon in the fields of chemical engineering and rheology because it originates from complex situations with experimental and numerical measurements. This paper presents results from the numerical modeling of the particle-fluid dynamics of a two-dimensional mixture of colloidal particles immersed in a fluid. Our results reveal the characteristic particle behavior with an application of a shear force to the upper part of the fluid domain. By combining the lattice Boltzmann and discrete element methods with the calculation of the lubrication forces when particles approach or recede from each other, this study aims to reveal the behavior of the suspension, specifically shear thickening. The results show that the calculated suspension viscosity is in good agreement with the experimental results. Results describing the particle deviation, diffusivity, concentration, and contact numbers are also demonstrated.

A systematic approach to the calibration of micro-parameters for the flat-jointed bonded particle model

  • Zhou, Changtai;Xu, Chaoshui;Karakus, Murat;Shen, Jiayi
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.471-482
    • /
    • 2018
  • A flat-jointed bonded-particle model (BPM) has been proved to be an effective tool for simulating mechanical behaviours of intact rocks. However, the tedious and time-consuming calibration procedure imposes restrictions on its widespread application. In this study, a systematic approach is proposed for simplifying the calibration procedure. The initial relationships between the microscopic, constitutive parameters and macro-mechanical rock properties are firstly determined through dimensionless analysis. Then, sensitivity analyses and regression analyses are conducted to quantify the relationships, using results from numerical simulations. Finally, four examples are used to demonstrate the effectiveness and robustness of the proposed systematic approach for the calibration procedure of BPMs.

Closing the "CIM GAP" in the Process Industries

  • Canfield, Frank-B.;Nair, Pratap-K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1557-1563
    • /
    • 1991
  • Vendors and consultants struggle to draw attention to their proven experience in discrete CIM in order to convince process manufacturers to adopt CIM technology. The analogy works very well at the periphery where an invoice is an invoice, but disintegrates at the core where modeling of the manufacturing "process" is required. Until recently, it has not been possible to completely and rigorously model entire process plants in real-time, and this missing core element has been called the "CIM GAP" With the recent introduction of the concurrent resolution $^{sm}$ kernel, the CIM GAP now is being closed in the process industries.ntroduction of the concurrent resolution $^{sm}$ kernel, the CIM GAP now is being closed in the process industries.

  • PDF

Probabilistic seismic risk assessment of a masonry tower considering local site effects

  • Ozden Saygili
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.191-201
    • /
    • 2024
  • A comprehensive probabilistic seismic hazard analysis was carried out in Istanbul to examine the seismotectonic features of the region. The results showed that earthquakes can trigger one another, resulting in the grouping of earthquakes in both time and space. The hazard analysis utilized the Poisson model and a conventional integration technique to generate the hazard curve, which shows the likelihood of ground motion surpassing specific values over a given period. Additionally, the study evaluated the impact of seismic hazard on the structural integrity of an existing masonry tower by simulating its seismic response under different ground motion intensities. The study's results emphasize the importance of considering the seismotectonic characteristics of an area when assessing seismic hazard and the structural performance of buildings in seismic-prone regions.

The Application of Genetic Algorithm for the Identification of Discontinuity Sets (불연속면 군 분류를 위한 유전자알고리즘의 응용)

  • Sunwoo Choon;Jung Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.47-54
    • /
    • 2005
  • One of the standard procedures of discontinuity survey is the joint set identification from the population of field orientation data. Discontinuity set identification is fundamental to rock engineering tasks such as rock mass classification, discrete element analysis, key block analysis. and discrete fracture network modeling. Conventionally, manual method using contour plot had been widely used for this task, but this method has some short-comings such as yielding subjective identification results, manual operations, and so on. In this study, the method of discontinuity set identification using genetic algorithm was introduced, but slightly modified to handle the orientation data. Finally, based on the genetic algorithm, we developed a FORTRAN program, Genetic Algorithm based Clustering(GAC) and applied it to two different discontinuity data sets. Genetic Algorithm based Clustering(GAC) was proved to be a fast and efficient method for the discontinuity set identification task. In addition, fitness function based on variance showed more efficient performance in finding the optimal number of clusters when compared with Davis - Bouldin index.

FPGA Design of Motion JPEG2000 Encoder for Digital Cinema (디지털 시네마용 Motion JPEG2000 인코더의 FPGA 설계)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.297-305
    • /
    • 2007
  • In the paper, a Motion JPEG2000 coder which has been set as the standard for image compression by the Digital Cinema Initiatives (DCI), an organization composed of major movie studios was implemented into a target FPGA. The DWT (Discrete Wavelet Transform) based on lifting and the Tier 1 of EBCOT (Embedded Block Coding with Optimized Truncation) which are major functional modules of the JPEG2000 were setup with dedicated hardware. The Tier 2 process was implemented in software. For digital cinema the tile-size was set to support $1024\times1024$ pixels. To ensure the real-time operations, three entropy encoders were used. When Verilog-HDL was used for hardware, resources of 32,470 LEs in Altera's Stratix EP1S80 were used, and the hardware worked stably at the frequency of 150Mhz.

Evaluation of the mechanical properties of discontinuous rock masses by using a bonded-particle model (입자결합모델을 이용한 불연속체 암반의 역학적 물성 평가)

  • Park Eui-Seob;Ryu Chang-Ha;Bae Seong-Ho
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.348-358
    • /
    • 2005
  • Although the evaluation of the mechanical properties and behavior of discontinuous rock masses is very important for the design of underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is assigning the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. Instead, the micro-scale properties of the intact rock and joints are defined and the macro-scale response results from those properties and the geometry of the problem. In this paper, a $30m{\times}30m{\times}30m$ jointed rock mass of road tunnel site was analyzed. A discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of discontinuous rock masses were determined and compared to the results of empirical methods such as RMR, Q and GSI. The values of Young's modulus, Poisson's ratio and peak strength are almost similar from PFC model and Empirical methods. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, the mechanical response of the PFC model was not determined by a user specified constitutive model.

  • PDF

Variable Radix-Two Multibit Coding and Its VLSI Implementation of DCT/IDCT (가변길이 다중비트 코딩을 이용한 DCT/IDCT의 설계)

  • 김대원;최준림
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.12
    • /
    • pp.1062-1070
    • /
    • 2002
  • In this paper, variable radix-two multibit coding algorithm is presented and applied in the implementation of discrete cosine transform(DCT) and inverse discrete cosine transform(IDCT). Variable radix-two multibit coding means the 2k SD (signed digit) representation of overlapped multibit scanning with variable shift method. SD represented by 2k generates partial products, which can be easily implemented with shifters and adders. This algorithm is most powerful for the hardware implementation of DCT/IDCT with constant coefficient matrix multiplication. This paper introduces the suggested algorithm, it's proof and the implementation of DCT/IDCT The implemented IDCT chip with 8 PEs(Processing Elements) and one transpose memory runs at a tate of 400 Mpixels/sec at 54MHz frequency for high speed parallel signal processing, and it's verified in HDTV and MPEG decoder.

Analysis of Relationship between 2-D Fabric Tensor Parameters and Hydraulic Properties of Fractured Rock Mass (절리성 암반의 이차원 균열텐서 파라미터와 수리적 특성 간의 상관성 분석에 관한 연구)

  • Um, Jeong-Gi;Han, Jisu
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.100-108
    • /
    • 2017
  • As a measure of the combined effect of fracture geometry, the fabric tensor parameters could quantify the status of the connected fluid flow paths in discrete fracture network (DFN). The correlation analysis between fabric tensor parameters and hydraulic properties of the 2-D DFN was performed in this study. It is found that there exists a strong nonlinear relationship between the directional conductivity and the fabric tensor component estimated in the direction normal to the direction of hydraulic conductivity. The circular radial plots without significant variation of the first invariant ($F_0$) of fabric tensor for different sized 2-D DFN block are a necessary condition for treating representative element volume (REV) of a fractured rock mass. The relative error (ER) between the numerically calculated directional hydraulic conductivity and the theoretical directional hydraulic conductivity decreases with the increase in $F_0$. A strong functional relation seems to exist between the $F_0$ and the average block hydraulic conductivity.