• Title/Summary/Keyword: discrete-analytical method

Search Result 107, Processing Time 0.028 seconds

Heat Transfer Analysis of Cylindrical Asphalt Specimen using DEM (DEM을 이용한 아스팔트 혼합물의 열전도 예측)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.19 no.4
    • /
    • pp.37-44
    • /
    • 2017
  • PURPOSES : Conductive and convective heat transfer simulations for an asphalt mixture were made by using discrete element method (DEM) and similarity principle. METHODS : In this research, virtual specimens composed of discrete element method particles were generated according to four different predetermined particle size distribution curves. Temperature variations of the four different particles for a given condition were estimated and were compared with measurements and analytical solutions. RESULTS : The virtual specimen with mixed particles and with the smallest particle show very good agreement with laboratory test results and analytical solutions. As particle size decreases, better heat transfer simulation can be performed due to smaller void ratio and more contact points and areas. In addition, by utilizing the similarity principle of thermal properties and corresponding time unit, analytical time can be drastically reduced. CONCLUSIONS : It is concluded that the DEM asphalt mixture specimens with similarity principle could be used to predict the temperature variation for a given condition. It is observed that the void ratio has critical effect on prediction of temperature variation. Comparing the prediction for a 4 mm particle specimen with a mixed particle specimen, it is also concluded that predicting the mixed particle specimen temperature is much more efficient considering the number of particles that are directly associated with computational time in DEM analysis.

Spectral Analysis Method for the Discrete Systems with Initial Conditions (초기조건을 갖는 이산계의 과도응답에 대한 스펙트럴해석법)

  • Kim Sunghwan;Cho Jooyong;Lee Usik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.578-583
    • /
    • 2005
  • This paper introduces a fast Fourier transform (FFT)-based spectral dynamic analysis method for the transient responses as well as the steady-state responses of the linear discrete systems subject to non-zero initial conditions. The forced vibration of a viscously damped three-DOF system is considered as the illustrative numerical example. The proposed spectral analysis method is evaluated by comparing its results with the exact analytical solutions and the numerical solutions obtained by the Runge-Kutta method.

Vibration analysis of plates with curvilinear quadrilateral domains by discrete singular convolution method

  • Civalek, Omer;Ozturk, Baki
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.279-299
    • /
    • 2010
  • A methodology on application of the discrete singular convolution (DSC) technique to the free vibration analysis of thin plates with curvilinear quadrilateral platforms is developed. In the proposed approach, irregular physical domain is transformed into a rectangular domain by using geometric coordinate transformation. The DSC procedures are then applied to discretization of the transformed set of governing equations and boundary conditions. For demonstration of the accuracy and convergence of the method, some numerical examples are provided on plates with different geometry such as elliptic, trapezoidal having straight and parabolic sides, sectorial, annular sectorial, and plates with four curved edges. The results obtained by the DSC method are compared with those obtained by other numerical and analytical methods. The method is suitable for the problem considered due to its generality, simplicity, and potential for further development.

Free vibration of circular and annular membranes with varying density by the method of discrete singular convolution

  • Ersoy, Hakan;Ozpolat, Lutfiye;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.621-634
    • /
    • 2009
  • A numerical method is developed to investigate the effects of some geometric parameters and density variation on frequency characteristics of the circular and annular membranes with varying density. The discrete singular convolution method based on regularized Shannon's delta kernel is applied to obtain the frequency parameter. The obtained results have been compared with the analytical and numerical results of other researchers, which showed well agreement.

The influence of the fluid flow velocity and direction on the wave dispersion in the initially inhomogeneously stressed hollow cylinder containing this fluid

  • Surkay D. Akbarov;Jamila N. Imamaliyeva;Reyhan S. Akbarli
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.247-275
    • /
    • 2024
  • The paper studies the influence of the fluid flow velocity and flow direction in the initial state on the dispersion of the axisymmetric waves propagating in the inhomogeneously pre-stressed hollow cylinder containing this fluid. The corresponding eigenvalue problem is formulated within the scope of the three-dimensional linearized theory of elastic waves in bodies with initial stresses, and with linearized Euler equations for the inviscid compressible fluid. The discrete-analytical solution method is employed, and analytical expressions of the sought values are derived from the solution to the corresponding field equations by employing the discrete-analytical method. The dispersion equation is obtained using these expressions and boundary and related compatibility conditions. Numerical results related to the action of the fluid flow velocity and flow direction on the influence of the inhomogeneous initial stresses on the dispersion curves in the zeroth and first modes are presented and discussed. As a result of the analyses of the numerical results, it is established how the fluid flow velocity and flow direction act on the magnitude of the influence of the initial inhomogeneous stresses on the wave propagation velocity in the cylinder containing the fluid.

Using a Lagrangian-Lagrangian approach for studying flow behavior inside a bubble column

  • YoungWoo Son;Cheol-O Ahn;SangHwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4395-4407
    • /
    • 2023
  • Bubble columns are widely encountered in several industries, especially in the field of nuclear safety. The Eulerian-Eulerian and the Eulerian-Lagrangian methods are commonly used to investigate bubble columns. Eulerian approaches require additional tasks such as strict volume conservation at the interface and a predefined well-structured grid. In contrast, the Lagrangian approach can be easily implemented. Hence, we introduce a fully Lagrangian approach for the simulation of bubble columns using the discrete bubble model (DBM) and moving particle semi-implicit (MPS) methods. Additionally, we propose a rigorous method to estimate the volume fraction accurately, and verified it through experimental data and analytical results. The MPS method was compared with the experimental data of Dambreak. The DBM was verified by analyzing the terminal velocity of a single bubble for each bubble size. It agreed with the analytical results for each of the four drag correlations. Additionally, the improved method for calculating the volume fraction showed agreement with the Ergun equation for the pressure drop in a packed bed. The implemented MPS-DBM was used to simulate the bubble column, and the results were compared with the experimental results. We demonstrated that the MPS-DBM was in quantitative agreement with the experimental data.

Sensitivity analysis based on complex variables in FEM for linear structures

  • Azqandi, Mojtaba Sheikhi;Hassanzadeh, Mahdi;Arjmand, Mohammad
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • One of the efficient and useful tools to achieve the optimal design of structures is employing the sensitivity analysis in the finite element model. In the numerical optimization process, often the semi-analytical method is used for estimation of derivatives of the objective function with respect to design variables. Numerical methods for calculation of sensitivities are susceptible to the step size in design parameters perturbation and this is one of the great disadvantages of these methods. This article uses complex variables method to calculate the sensitivity analysis and combine it with discrete sensitivity analysis. Finally, it provides a new method to obtain the sensitivity analysis for linear structures. The use of complex variables method for sensitivity analysis has several advantages compared to other numerical methods. Implementing the finite element to calculate first derivatives of sensitivity using this method has no complexity and only requires the change in finite element meshing in the imaginary axis. This means that the real value of coordinates does not change. Second, this method has the lower dependency on the step size. In this research, the process of sensitivity analysis calculation using a finite element model based on complex variables is explained for linear problems, and some examples that have known analytical solution are solved. Results obtained by using the presented method in comparison with exact solution and also finite difference method indicate the excellent efficiency of the proposed method, and it can predict the sustainable and accurate results with the several different step sizes, despite low dependence on step size.

Stability and non-stationary vibration analysis of beams subjected to periodic axial forces using discrete singular convolution

  • Song, Zhiwei;Li, Wei;Liu, Guirong
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.487-499
    • /
    • 2012
  • Dynamic instability of beams subjected to periodic axial forces is studied using the discrete singular convolution (DSC) method with the regularized Shannon's delta kernel. The principal regions of dynamic instability under different boundary conditions are examined in detail, and the non-stationary vibrations near the stability-instability critical regions have been investigated. It is found that the results obtained by using the DSC method are consistent with the analytical solutions, which shows that the DSC algorithm is suitable for the problems considered in this study. It was found that there is a narrow region of beat vibration existed in the vicinity of one side (${\theta}/{\Omega}$ > 1) of the boundaries of the instable region for each condition.

Free Vibration and Buckling Analysis of the Composite Laminated Cylindrical Shells with the Orthogonal Stiffeners (직교보강된 복합재료 원통셀의 진동 및 좌굴해석)

  • 이영신;김영완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.349-354
    • /
    • 1996
  • The analytical solutions for the free vibration and buckling of cross-ply laminated composite cylindrical shell with axial stiffeners(stringers) and circumferential stiffeners(rings), that is, orthogonally stiffened shells, are presented using the energy method. The stiffeners are assumed to be an integral part of the shell and have been directly included in analysis(it's called discrete stiffener theory). The effect of the parameters such as the stacking sequences, the shell thickness, the shell length-to-radius ratio are studied. By comparison with the previously published analytical results for the stiffened cylindrical shells, it is shown that natural frequencies can be determined with adequate accuracy.

  • PDF

Vibration Analysis of Ring Stiffened Cylindrical Shells with a Rectangular Cutout (사각개구부를 갖는 링보강 원통셸의 진동해석)

  • Kim, Yeong-Wan;Lee, Yeong-Sin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2040-2049
    • /
    • 1999
  • The Rayleigh-Ritz method is used to investigate the natural frequencies and mode shapes of the ring stiffened cylindrical shells with a rectangular cutout. The cutout is located on the center of the shell. The Love's thin shell theory combined with the discrete stiffener theory is adopted to formulate the analytical model of the shell. The effect of stiffener eccentricity, number, and position on vibration characteristics of the shell is examined. Also the effect of cutout size is examined. By comparison with previously published analytical and new FEM results, it is shown that natural frequencies and mode shapes can be determined with adequate accuracy.