• Title/Summary/Keyword: discrete time-varying system

Search Result 104, Processing Time 0.029 seconds

FIR Fixed-Interval Smoothing Filter for Discrete Nonlinear System with Modeling Uncertainty and Its Application to DR/GPS Integrated Navigation System (모델링 불확실성을 갖는 이산구조 비선형 시스템을 위한 유한 임펄스 응답 고정구간 스무딩 필터 및 DR/GPS 결합항법 시스템에 적용)

  • Cho, Seong Yun;Kim, Kyong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.481-487
    • /
    • 2013
  • This paper presents an FIR (Finite Impulse Response) fixed-interval smoothing filter for fast and exact estimating state variables of a discrete nonlinear system with modeling uncertainty. Conventional IIR (Infinite Impulse Response) filter and smoothing filter can estimate state variables of a system with an exact model when the system is observable. When there is an uncertainty in the system model, however, conventional IIR filter and smoothing filter may cause large errors because the filters cannot estimate the state variables corresponding to the uncertain model exactly. To solve this problem, FIR filters that have fast estimation properties and have robustness to the modeling uncertainty have been developed. However, there is time-delay estimation phenomenon in the FIR filter. The FIR smoothing filter proposed in this paper makes up for the drawbacks of the IIR filter, IIR smoothing filter, and FIR filter. Therefore, the FIR smoothing filter has good estimation performance irrespective of modeling uncertainty. The proposed FIR smoothing filter is applied to the integrated navigation system composed of a magnetic compass based DR (Dead Reckoning) and a GPS (Global Positioning System) receiver. Even when the magnetic compass error that changes largely as the surrounding magnetic field is modeled as a random constant, it is shown that the FIR smoothing filter can estimate the varying magnetic compass error fast and exactly with simulation results.

Indirect Decentralized Learning Control for the Multiple Systems (복합시스템을 위한 간접분산학습제어)

  • Lee, Soo-Cheol
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 1996.11a
    • /
    • pp.217-227
    • /
    • 1996
  • The new field of learning control develops controllers that learn to improve their performance at executing a given task, based on experience performin this specific task. In a previous work[6], the authors presented a theory of indirect learning control based on use of indirect adaptive control concepts employing simultaneous identification ad control. This paper develops improved indirect learning control algorithms, and studies the use of such controllers in decentralized systems. The original motivation of the learning control field was learning in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. The basic result of the paper is to show that stability of the indirect learning controllers for all subsystems when the coupling between subsystems is turned off, assures convergence to zero tracking error of the decentralized indirect learning control of the coupled system, provided that the sample time in the digital learning controller is sufficiently short.

  • PDF

Hybrid Adaptive Feedforward Control System Against State and Input Disturbances (시스템 상태 및 입력 외란을 고려한 하이브리드 방식의 적응형 피드포워드 제어시스템)

  • Kim, Jun-Su;Cho, Hyun-Cheol;Kim, Gwan-Hyung;Ha, Hong-Gon;Lee, Hyung-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • AFC (Adaptive Feedforward Control) is significantly employed for improving control performance of dynamic systems particularly involving periodic disturbance signals in engineering fields. This paper presents a novel hybrid AFC approach for discrete-time systems with multiple disturbances in terms of control input and state variables. The proposed AFC mechanism is hierarchically composed of a conventional feedforward control framework and PID auxiliary control configuration in parallel. The former is generic to decrease periodic disturbance excited to control actuators and the latter is additionally constructed to overcome control deterioration due to time-varying uncertainty under given systems. We carry out numerical simulation to test reliability of our proposed hybrid AFC system and compare its control performance to a well-known conventional AFC method with respect to time and frequency domains for proving of its superiority.

Simulation of Efficient FlowControl for Photolithography Process Manufacturing of Semiconductor

  • Han, Young-Shin;Lee, Chilgee
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.269-273
    • /
    • 2001
  • Semiconductor wafer fabrication is a business of high capital investment and fast changing nature. To be competitive, the production in a fab needs to be effectively planned and scheduled starting from the ramping up phase, so that the business goals such as on-time delivery, high output volume and effective use of capital intensive equipment can be achieved. In this paper, we propose Stand Alone layout and In-Line layout are analyzed and compared while varying number of device variable changes. The comparison is performed through simulation using ProSys; a window 98 based discrete system simulation software, as a tool for comparing performance of two proposed layouts. The comparison demonstrates that when the number of device variable change is small, In-Line layout is more efficient in terms of production quantity. However, as the number of device variable change is more than 14 titles, Stand Alone layout prevails over In-Line layout.

  • PDF

On learning control of robot manipulator including the bounded input torque (제한 입력을 고려한 로보트 매니플레이터의 학습제어에 관한 연구)

  • 성호진;조현찬;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.58-62
    • /
    • 1988
  • Recently many adaptive control schemes for the industrial robot manipulator have been developed. Especially, learning control utilizing the repetitive motion of robot and based on iterative signal synthesis attracts much interests. However, since most of these approaches excludes the boundness of the input torque supplied to the manipulator, its effectiveness may be limited and also the full dynamic capacity of the robot manipulator can not be utilized. To overcome the above-mentioned difficulties and meet the desired performance, we propose an approach which yields the effective learning control schemes in this paper. In this study, some stability conditions derived from applying the Lyapunov theory to the discrete linear time-varying dynamic system are established and also an optimization scheme considering the bounded input torque is introduced. These results are simulated on a digital computer using a three-joint revolute manipulator to show their effectiveness.

  • PDF

Indirect Decentralized Learning Control for the Multiple Systems (복합시스템을 위한 간접분산학습제어)

  • Lee, Soo-Cheol
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1996.10a
    • /
    • pp.217-227
    • /
    • 1996
  • The new filed of learning control develops controllers that learn to improve their performance at executing a given task , based on experience performing this specific task. In a previous work[6], authors presented a theory of indirect learning control based on use of indirect adaptive control concepts employing simultaneous identification and control. This paper develops improved indirect learning control algorithms, and studies the use of such controller indecentralized systems. The original motivation of the learning control field was learning in robots doing repetitive tasks such as on an asssembly line. This paper starts with decentralized discrete time systems. and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. The resultof the paper is to show that stability of the indirect learning controllers for all subsystems when the coupling between subsystems is turned off, assures convergence to zero tracking error of the decentralized indirect learning control of the coupled system, provided that the sample tie in the digital learning controller is sufficiently short.

A Study on the Underwater Navigation System with Adaptive Receding Horizon Kalman Filter (적응 이동 구간 칼만 필터를 이용한 무인 잠수정의 항법 시스템에 관한 연구)

  • Jo, Gyung-Nam;Seo, Dong-C.;Choi, Hang-S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.269-279
    • /
    • 2008
  • In this paper, an underwater navigation system with adaptive receding horizon Kalman filter (ARHKF) is studied. It is well known that incorrect statistical information and temporal disturbance invoke errors of any navigation systems with Kalman filter, which makes the autonomous navigation difficult in real underwater environment. In this context, two kinds of problems are herein considered. The first one is the development of an algorithm, which estimates the noise covariance of a linear discrete time-varying stochastic system. The second one is the implementation of ARHKF to underwater navigation systems. The performance of the derived estimation algorithm of noise covariance and the ARHKF are verified by simulation and experiment in the towing tank of Seoul National University.

Prediction of Groundwater Levels in Hillside Slopes Using the Autoregressive Model (AR 모델을 이용한 산사면에서의 지하수위 예측)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.9 no.3
    • /
    • pp.67-76
    • /
    • 1993
  • Korea being composed of a number of mountains has been damaged and destroyed in lives and properties by the occurrence of many landslides during the wet seasons. Therefore, it is necessary to study the forecast system and risk analysis for the occurrence of landslides : the rise of groundwater levels due to rainfall is the main cause of landslides. In this paper, the autoregressive models are used to predict the grondwater levls using cases of both time invariant and time -varing autoregressive coefficients. In the former case, AR(1), AR(2), and AR(3) models are selected and their single-valued parameters are estimated to fit them to the observed groundwater level series. In the latter case, modified AR(1) and typical AR(2) models are used as process model and a discrete Kalman Filtering technique is utilized to estimate the parameters which are themselves a function of time. The results show that the real time forecast system using the time-varying autoregressive coefficinets as well as time -invariant AR model is good to predict the groundwater level in hillside slopes and we might get better result if we use the time-hourly rainfall intensity as well as the observed groundwater level.

  • PDF

Rotor Position Sensing Method for Switched Reluctance Motors Using an Indirect Sensor

  • Shin Duck-Shick;Yang Hyong-Yeol;Lim Young-Cheol;Freere Peter;Gurung Krishna
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.173-179
    • /
    • 2005
  • In this paper, a very low cost and robust sensing method for the rotor position of a TSRM(Toroidal Switched Reluctance Motors) is described. Position information of the rotor is essential for SRM drives. The rotor position sensor such as an opto-interrupter or high performance encoder is generally used for the estimation of rotor position. However, these discrete position sensors not only add complexity and cost to the system but also tend to reduce the reliability of the drive system. In order to solve these problems, in the proposed method, rotor position detection is achieved using voltage waveforms induced by the time varying flux linkage in the search coils, and then the appropriate phases are excited to drive the SRM. But the search coil's EMF is generated only when the motor rotates. Therefore the rotor position sensing method using squared Euclidean distance at a standstill is also examined. The simulation and experimental results are presented to verify the performance of the proposed method in this paper.

Indirect Adaptive Decentralized Learning Control based Error Wave Propagation of the Vertical Multiple Dynamic Systems (수직다물체시스템의 오차파형전달방식 간접적응형 분산학습제어)

  • Lee Soo-Cheol
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.211-217
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the teaming control field was teaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

  • PDF