• 제목/요약/키워드: discrete scheme

Search Result 593, Processing Time 0.026 seconds

Ripple Analysis and Control of Electric Multiple Unit Traction Drives under a Fluctuating DC Link Voltage

  • Diao, Li-Jun;Dong, Kan;Yin, Shao-Bo;Tang, Jing;Chen, Jie
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1851-1860
    • /
    • 2016
  • The traction motors in electric multiple unit (EMU) trains are powered by AC-DC-AC converters, and the DC link voltage is generated by single phase PWM converters, with a fluctuation component under twice the frequency of the input catenary AC grid, which causes fluctuations in the motor torque and current. Traditionally, heavy and low-efficiency hardware LC resonant filters parallel in the DC side are adopted to reduce the ripple effect. In this paper, an analytical model of the ripple phenomenon is derived and analyzed in the frequency domain, and a ripple control scheme compensating the slip frequency of rotor vector control systems without a hardware filter is applied to reduce the torque and current ripple amplitude. Then a relatively simple discretization method is chosen to discretize the algorithm with a high discrete accuracy. Simulation and experimental results validate the proposed ripple control strategy.

Optical Encryption of a Binary Image by Phase Modulation of the Wavefront

  • Song, Jaehun;Moon, Inkyu;Lee, Yeonho
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.358-362
    • /
    • 2016
  • We present a new scheme for optical encryption of a binary image. In our method, the original binary data page is first divided into two identical pages. In each data page, the “on” and “off” pixels are represented by two discrete phases that are 90° apart. The first page corresponds to the phase conjugation of the second page, and vice versa. In addition, the wavefront of the two data pages is changed simultaneously from planar to spherical, for better encryption. The wavefront modification is represented by an extra phase shift, which is a function of position on the wavefront. In this way the two separate pages are both encrypted, and therefore the pages cannot be distinguished in a CCD. If the first page is used as an encrypted data page, then the second page is used as the decryption key, and vice versa. The decryption can be done by simply combining the two encrypted data pages. It is shown in our experiment that encryption and decryption can be fully accomplished in the optical domain.

A Study on a Digital Amplifier.Controller for Proportional Control Valve (비례제어밸브용 디지털 앰프.컨트롤러에 대한 연구)

  • Lee, J.C.;Koh, J.U.;Kwon, T.H.;Shin, H.B.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2011
  • This study presents the design of digital amplifier.controller for a proportional control valve and the development of PID discrete control scheme by using RCP(Rapid Controller Prototyping) system. RCP system is the device to embed the control code developed in PC into the microcontroller on-site. Ramp input test using the digital amplifier.controller developed in this study was carried out for the proportional control valve of domestic production and Bosch Rexroth respectively. The instability problem occurred around maximum displacement of localized valve spool at ramp input test was solved by supplementing offset current to the duty ratio of PWM(Pulse Width Modulation) driving signal to the solenoid. The comparison of test results between localized proportional control valve and Bosch Rexroth's product shows that the characteristics obtained by ramp input test and static flow gains are alike each other. Two valves are about the same in dead bands and hysteresis characteristics.

Fault diagnostic system for rotating machine based on Wavelet packet transform and Elman neural network

  • Youk, Yui-su;Zhang, Cong-Yi;Kim, Sung-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.178-184
    • /
    • 2009
  • An efficient fault diagnosis system is needed for industry because it can optimize the resources management and improve the performance of the system. In this study, a fault diagnostic system is proposed for rotating machine using wavelet packet transform (WPT) and elman neural network (ENN) techniques. In most fault diagnosis for mechanical systems, WPT is a well-known signal processing technique for fault detection and identification. In previous work, WPT can improve the continuous wavelet transform (CWT) used over a longer computing time and huge operand. It can also solve the frequency-band disagreement by discrete wavelet transform (DWT) only breaking up the approximation version. In the experimental work, the extracted features from the WPT are used as inputs in an Elman neural network. The results show that the scheme can reliably diagnose four different conditions and can be considered as an improvement of previous works in this field.

Performance Improvement of an Anti-Islanding Algorithm using the Variation of Reactive Power with an Improved DFT Method (개선된 DFT을 이용한 무효전력변동 단독운전 검출기법의 성능 개선)

  • Kang, Duk-Hong;Choi, Dae-Keun;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.179-187
    • /
    • 2010
  • This paper proposes a new anti-islanding method for single-phase grid-connected photovoltaic (PV) systems using Goertzel algorithm. The proposed scheme is based on inducing increases or decreases of frequencies of load voltage and current that is in the form of existences or periodical variations of the reactive power components. The frequency detection is needed to apply this power variation method to the grid-connected power converter. The proposed method is able to get a fast detection for anti-islanding without the effect of harmonics and noises. The simulation and experiment results validate the effectiveness of the proposed method.

Analysis of Airflow Pattern and Particle Dispersion in Enclosed Environment Using Traditional CFD and Lattice Boltzmann Methods

  • Inoguchi, Tomo;Ito, Kazuhide
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.87-97
    • /
    • 2012
  • The indoor environments in high-rise buildings are generally well enclosed by defined boundary conditions. Here, a numerical simulation method based on the Lattice Boltzmann method (LBM), which aims to model and simulate the turbulent flow accurately in an enclosed environment, and its comparison with traditional computational fluid dynamics (CFD) results, are presented in this paper. CFD has become a powerful tool for predicting and evaluating enclosed airflows with the rapid advance in computer capacity and speed, and various types of CFD turbulence modeling and its application and validation have been reported. The LBM is a relatively new method; it involves solving of the discrete Boltzmann equation to simulate the fluid flow with a collision model instead of solving Navier-Stokes equations. In this study, the LBM-based scheme of flow pattern and particle dispersion analyses are validated using the benchmark test case of two- and three-dimensional and isothermal conditions (IEA/Annex 20 case); the prediction accuracy and advantages are also discussed by comparison with the results of CFD.

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.237-255
    • /
    • 2013
  • In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.

An efficient VLSI Implementation of the 2-D DCT with the Algorithm Decomposition (알고리즘 분해를 이용한 2-D DCT)

  • Jeong, Jae-Gil
    • The Journal of Natural Sciences
    • /
    • v.7
    • /
    • pp.27-35
    • /
    • 1995
  • This paper introduces a VLSI (Very Large Scale Integrated Circuit) implementation of the 2-D Discrete Cosine Transform (DCT) with an application to image and video coding. This implementation, which is based upon a state space model, uses both algorithm and data partitioning to achieve high efficiency. With this implementation, the amount of data transfers between the processing elements (PEs) are reduced and all the data transfers are limitted to be local. This system accepts the input as a progressively scanned data stream which reduces the hardware required for the input data control module. With proper ordering of computations, a matrix transposition between two matrix by matrix multiplications, which is required in many 2-D DCT systems based upon a row-column decomposition, can be also removed. The new implementation scheme makes it feasible to implement a single 2-D DCT VLSI chip which can be easily expanded for a larger 2-D DCT by cascading these chips.

  • PDF

Intelligent Digital Redesign of Biodynamic Model of HIV-1 (HIV-1 바이오 동역학 모델의 지능형 디지털 재설계)

  • Kim Do-Wan;Joo Young-Hoon;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.547-553
    • /
    • 2006
  • This paper studies digital control of biodynamic model of HIV-1 via intelligent digital redesign (IDR). The purpose of the IDR is to develop an equivalent digital fuzzy controller maintaining the satisfactory performance of an existing continuous-time fuzzy controller in the sense of the state-matching. Some conditions for the stability as well as the global state-matching are provided.. They are given by the form of the linear matrix inequalities (LMIs) and thereby easily tractable by the convex optimization techniques. The main features of the proposed method are that 1) the generalized control scheme is provided for the multirate as well as the single-rate digital controllers; 2) a new compensated block-pulse function method is applied to closely match the states of the continuous-time and the sampled-data fuzzy systems in the discrete-time domain; 3) the two-step procedure of IDR is presented to prevent the performance degradation caused by the additional stability conditions. The applicability of the proposed approach is shown through the biodynamic model of HIV-1.

Performance analysis of multi-carrier CDMA system using an orthogonal pair of quadrature filter banks (직교 쌍 필터 뱅크 기반 다중 반송파 CDMA 시스템의 성능분석)

  • 이재철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1570-1578
    • /
    • 2000
  • A quadrature pair of filter banks that are composed of a pair of cosine and sine modulated filter banks is applied to MC-CDMA data transmultiplexing in the view point of mitigating inter-channel interferences. Exploiting superior capabilities of wavelet properties in composing the filter banks the proposed scheme is capable of compromising inter-channel interference problems better than the conventional DFT-based MC-CDMA due to superior subchannelization effects. To verify the behavior of our proposed MC-CDMA system based on the quadrature filter banks the reverse-link bit error rates with respect to signal-to-noise ratio under Rayleigth fading and additive white Gaussian noise channel environments are computed. The results show an improved system performance over the conventional MC-CDMA in the view point of minimizing interference effects.

  • PDF