• Title/Summary/Keyword: discrete scheme

Search Result 593, Processing Time 0.033 seconds

THE DISCRETE-TIME ANALYSIS OF THE LEAKY BUCKET SCHEME WITH DYNAMIC LEAKY RATE CONTROL

  • Choi, Bong-Dae;Choi, Doo-Il
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.603-627
    • /
    • 1998
  • The leaky bucket scheme is a promising method that regulates input traffics for preventive congestion control. In the ATM network, the input traffics are bursty and transmitted at high-speed. In order to get the low loss probability for bursty input traffics, it is known that the leaky bucket scheme with static leaky rate requires larger data buffer and token pool size. This causes the increase of the mean waiting time for an input traffic to pass the policing function, which would be inappropriate for real time traffics such as voice and video. We present the leaky bucket scheme with dynamic leaky rate in which the token generation period changes according to buffer occupancy. In the leaky bucket scheme with dynamic leaky rate, the cell loss probability and the mean waiting time are reduced in comparison with the leaky bucket scheme with static leaky rate. We analyze the performance of the proposed leaky bucket scheme in discrete-time case by assuming arrival process to be Markov-modulated Bernoulli process (MMBP).

  • PDF

A Strong Designated Verifiable DL Based Signcryption Scheme

  • Mohanty, Sujata;Majhi, Banshidhar
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.567-574
    • /
    • 2012
  • This paper presents a strong designated verifiable signcryption scheme, in which a message is signcrypted by a signcryptor and only a specific receiver, who called a "designated verifier", verifies it using his own secret key. The scheme is secure, as an adversary can not verify the signature even if the secret key of the signer is compromised or leaked. The security of the proposed scheme lies in the complexity of solving two computationally hard problems, namely, the Discrete Logarithm Problem (DLP) and the Integer Factorization Problem (IFP). The security analysis of the scheme has been done and it is proved that, the proposed scheme can withstand an adaptive chosen ciphertext attack. This scheme can be very useful in organizations where there is a need to send confidential documents to a specific recipient. This scheme can also be applicable to real life scenarios, such as, e-commerce applications, e-banking and e-voting.

A Study on Efficient Polynomial-Based Discrete Behavioral Modeling Scheme for Nonlinear RF Power Amplifier (비선형 RF 전력 증폭기의 효율적 다항식 기반 이산 행동 모델링 기법에 관한 연구)

  • Kim, Dae-Geun;Ku, Hyun-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1220-1228
    • /
    • 2010
  • In this paper, we suggest a scheme to develop an efficient discrete nonlinear model based on polynomial structure for a RF power amplifier(PA). We describe a procedure to extract a discrete nonlinear model such as Taylor series or memory polynomial by sampling the input and output signal of RF PA. The performance of the model is analyzed varying the model parameters such as sample rate, nonlinear order, and memory depth. The results show that the relative error of the model is converged if the parameters are larger than specific values. We suggest an efficient modeling scheme considering complexity of the discrete model depending on the values of the model parameters. Modeling efficiency index(MEI) is defined, and it is used to extract optimum values for the model parameters. The suggested scheme is applied to discrete modeling of various RF PAs with various input signals such as WCDMA, WiBro, etc. The suggested scheme can be applied to the efficient design of digital predistorter for the wideband transmitter.

Correlation-Based Watermarking Scheme Using Wavelet Transform and Extended Sequences

  • Kanai, Ryota;Kondo, Shozo;Atsuta, Kiyoaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1717-1720
    • /
    • 2004
  • In this paper we propose a new scheme of watermarking using the discrete wavelet transform, the discrete cosine transform, and the performance evaluation function, which does not deteriorate image quality and have robustness to attacks such as compression and scaling. moreover even if a detected watermark, which is a bit sequence in this paper, has some error bits, it can be correctly recovered using correlation-based determination scheme.

  • PDF

Improvement of Image Scrambling Scheme Using DPSS(Discrete Prolate Spheroidal Sequence) and Digital Watermarking Application (DPSS(Discrete Prolate Spheroidal Sequence)를 이용한 영상 스크램블링 방식의 개선 및 디지털 워터마킹 응용)

  • Lee, Hye-Joo;Nam, Je-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1417-1426
    • /
    • 2007
  • As one of schemes to protect multimedia content. it is the selective encryption scheme to encrypt partially multimedia content. Compared AES(advanced encryption standard) of traditional encryption, the selective encryption scheme provides low security but is applicable to applications of multimedia content not to require high secrecy. In this paper, we improve the image scrambling scheme proposed by Van De Ville which scrambles an image without bandwidth expansion using DPSS(discrete prolate spheroidal sequence) to make it more secure based on Shujun's research which verifies the secrecy of Van De Ville's scheme. The proposed method utilizes an orthonormalized random matrix instead of Hadamard matrix for secret matrix and to add it for providing high secrecy against statistical attack or known-plaintext attack using some statistical property or estimate of secret matrix from a scrambled image. The experimental results show that the proposed method is more secure than the existing scheme. In addition, we show that the proposed method can be applied to access control or copy control of watermarking application.

  • PDF

GENERATING SAMPLE PATHS AND THEIR CONVERGENCE OF THE GEOMETRIC FRACTIONAL BROWNIAN MOTION

  • Choe, Hi Jun;Chu, Jeong Ho;Kim, Jongeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1241-1261
    • /
    • 2018
  • We derive discrete time model of the geometric fractional Brownian motion. It provides numerical pricing scheme of financial derivatives when the market is driven by geometric fractional Brownian motion. With the convergence analysis, we guarantee the convergence of Monte Carlo simulations. The strong convergence rate of our scheme has order H which is Hurst parameter. To obtain our model we need to convert Wick product term of stochastic differential equation into Wick free discrete equation through Malliavin calculus but ours does not include Malliavin derivative term. Finally, we include several numerical experiments for the option pricing.

Use of Discrete Vortex Method for VIV Response Analysis (VIV 해석을 위한 이산 보오텍스방법의 이용)

  • Kim, Yoo-Chul;Rheem, Chang-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.249-258
    • /
    • 2009
  • DVM (Discrete Vortex Method) is a numerical scheme that handles discrete vortex particles to express continuous vorticity field. This scheme is proper to VIV (Vortex Induced Vibration) analysis because there is no need to generate field grids and VIV is caused by separated vorticity from the body. When DVM is applied to VIV analysis, there are some applicable schemes such as using vortex blobs, integral method for computing induced velocity, etc. In this study, the influences of these schemes are investigated and the practical scheme that is appropriate for VIV analysis is proposed.

Photovoltaic System Allocation Using Discrete Particle Swarm Optimization with Multi-level Quantization

  • Song, Hwa-Chang;Diolata, Ryan;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.185-193
    • /
    • 2009
  • This paper presents a methodology for photovoltaic (PV) system allocation in distribution systems using a discrete particle swarm optimization (DPSO). The PV allocation problem is in the category of mixed integer nonlinear programming and its formulation may include multi-valued dis-crete variables. Thus, the PSO requires a scheme to deal with multi-valued discrete variables. This paper introduces a novel multi-level quantization scheme using a sigmoid function for discrete particle swarm optimization. The technique is employed to a standard PSO architecture; the same velocity update equation as in continuous versions of PSO is used but the particle's positions are updated in an alternative manner. The set of multi-level quantization is defined as integer multiples of powers-of-two terms to efficiently approximate the sigmoid function in transforming a particle's position into discrete values. A comparison with a genetic algorithm (GA) is performed to verify the quality of the solutions obtained.

Avalanche and Bit Independence Properties of Photon-counting Double Random Phase Encoding in Gyrator Domain

  • Lee, Jieun;Sultana, Nishat;Yi, Faliu;Moon, Inkyu
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.368-377
    • /
    • 2018
  • In this paper, we evaluate cryptographic properties of a double random phase encoding (DRPE) scheme in the discrete Gyrator domain with avalanche and bit independence criterions. DRPE in the discrete Gyrator domain is reported to have higher security than traditional DRPE in the Fourier domain because the rotation angle involved in the Gyrator transform is viewed as additional secret keys. However, our numerical experimental results demonstrate that the DRPE in the discrete Gyrator domain has an excellent bit independence feature but does not possess a good avalanche effect property and hence needs to be improved to satisfy with acceptable avalanche effect that would be robust against statistical-based cryptanalysis. We compare our results with the avalanche and bit independence criterion (BIC) performances of the conventional DRPE scheme, and improve the avalanche effect of DRPE in the discrete Gyrator domain by integrating a photon counting imaging technique. Although the Gyrator transform-based image cryptosystem has been studied, to the best of our knowledge, this is the first report on a cryptographic evaluation of discrete Gyrator transform with avalanche and bit independence criterions.

Efficient key generation leveraging wireless channel reciprocity and discrete cosine transform

  • Zhan, Furui;Yao, Nianmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2701-2722
    • /
    • 2017
  • Key generation is essential for protecting wireless networks. Based on wireless channel reciprocity, transceivers can generate shared secret keys by measuring their communicating channels. However, due to non-simultaneous measurements, asymmetric noises and other interferences, channel measurements collected by different transceivers are highly correlated but not identical and thus might have some discrepancies. Further, these discrepancies might lead to mismatches of bit sequences after quantization. The referred mismatches significantly affect the efficiency of key generation. In this paper, an efficient key generation scheme leveraging wireless channel reciprocity is proposed. To reduce the bit mismatch rate and enhance the efficiency of key generation, the involved transceivers separately apply discrete cosine transform (DCT) and inverse discrete cosine transform (IDCT) to pre-process their measurements. Then, the outputs of IDCT are quantified and encoded to establish the bit sequence. With the implementations of information reconciliation and privacy amplification, the shared secret key can be generated. Several experiments in real environments are conducted to evaluate the proposed scheme. During each experiment, the shared key is established from the received signal strength (RSS) of heterogeneous devices. The results of experiments demonstrate that the proposed scheme can efficiently generate shared secret keys between transceivers.