• Title/Summary/Keyword: discrete scheme

Search Result 593, Processing Time 0.023 seconds

A Hybrid Spatial Differencing Scheme for Discrete Ordinates Method in 2D Rectangular Enclosures (2차원 사각 밀폐 공간에서의 구분 종좌표법을 위한 하이브리드 공간 차분법)

  • Kim, Il-Kyoung;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.104-113
    • /
    • 1999
  • A hybrid spatial differencing scheme for the discrete ordinates method is proposed to predict radiative heat transfer in two-dimensional rectangular enclosures. Since this scheme takes the advantages of the diamond scheme and step scheme and includes the characteristics of medium, more accurate and stable results can be obtained. In its development several spatial differencing schemes are examined to address the effect of numerical smearing (or false scattering). Predictions from the proposed hybrid scheme are compared to those of other schemes for transparent, purely absorbing, purely scattering, or absorbing-emitting-isotropically scattering media. It is found that the proposed scheme predicts stable and less smeared results than others.

A new scheme for discrete implicit adaptive observer and controller (이산형 적응관측자 및 제어기의 새로운 구성)

  • 고명삼;허욱열
    • 전기의세계
    • /
    • v.30 no.12
    • /
    • pp.822-831
    • /
    • 1981
  • Many different schemes of the adaptive observer and controller have been developed for both continuous and discrete systems. In this paper we have presented a new scheme of the reduced order adaptive observer for the single input discrete linear time invariant plant. The output equation of the plant, is transformed into the bilinear form in terms of system parameters and the states of the state variable filters. Using the plant output equation the discrete implicit adaptive observer based on the similar philosophy to Nuyan and Carroll is derived and the parameter adaptation algorithm is derived based on the exponentially weighted least square method. The adaptive model following control system is also constructed according to the proposed observer scheme. The proposed observer and controller are rather than simple structure and have a fast adaptive algorithm, so it may be expected that the scheme is suitable to the practical application of control system design. The effectiveness of the algorithm and structure is illustrated by the computer simulation of a third order system. The simulation results show that the convergence speed is proportinal to the increasing of weighting factor alpha, and that the full order and reduced order observer have similar convergence characteristics.

  • PDF

Effectiveness of the Discrete Elements Method for the Slab-Geometry Neutron Transport Equation (1차원 평판에서 Discrete Elements Method의 정확도에 대한 연구)

  • Na, Byung-Chan;Kim, ong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.151-158
    • /
    • 1990
  • The new discrete elements method (DEM) is applied to the one-group neutron transport equation in one-dimensional slab geometry. The fixed source and the criticality problems are treated and three spatial differencing schemes (the DD, the SC, -and the LC schemes) are tested to determine the most computationally efficient in the DEM. In all cases, the accuracy of the results obtained from the DEM shows an improvement over that obtained from the standard discrete ordinates calculations. And the LC scheme gives the most accurate results in the DEM.

  • PDF

STABILIZED-PENALIZED COLLOCATED FINITE VOLUME SCHEME FOR INCOMPRESSIBLE BIOFLUID FLOWS

  • Kechkar, Nasserdine;Louaar, Mohammed
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.519-548
    • /
    • 2022
  • In this paper, a stabilized-penalized collocated finite volume (SPCFV) scheme is developed and studied for the stationary generalized Navier-Stokes equations with mixed Dirichlet-traction boundary conditions modelling an incompressible biological fluid flow. This method is based on the lowest order approximation (piecewise constants) for both velocity and pressure unknowns. The stabilization-penalization is performed by adding discrete pressure terms to the approximate formulation. These simultaneously involve discrete jump pressures through the interior volume-boundaries and discrete pressures of volumes on the domain boundary. Stability, existence and uniqueness of discrete solutions are established. Moreover, a convergence analysis of the nonlinear solver is also provided. Numerical results from model tests are performed to demonstrate the stability, optimal convergence in the usual L2 and discrete H1 norms as well as robustness of the proposed scheme with respect to the choice of the given traction vector.

EXPLICIT EXPRESSION OF THE KRAWTCHOUK POLYNOMIAL VIA A DISCRETE GREEN'S FUNCTION

  • Kim, Gil Chun;Lee, Yoonjin
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.509-527
    • /
    • 2013
  • A Krawtchouk polynomial is introduced as the classical Mac-Williams identity, which can be expressed in weight-enumerator-free form of a linear code and its dual code over a Hamming scheme. In this paper we find a new explicit expression for the $p$-number and the $q$-number, which are more generalized notions of the Krawtchouk polynomial in the P-polynomial schemes by using an extended version of a discrete Green's function. As corollaries, we obtain a new expression of the Krawtchouk polynomial over the Hamming scheme and the Eberlein polynomial over the Johnson scheme. Furthermore, we find another version of the MacWilliams identity over a Hamming scheme.

Threshold Digital Signatures based on Discrete Logarithm

  • Park, Choonsik
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.87-95
    • /
    • 1996
  • This paper presents a (k,n) threshold digital signature scheme with no trusted dealer. Our idea is to use the EIGamal signature scheme modified for group use. Among many digital signature schemes, our modification has a nice property for our purpose. We also show a (k.n) threshold fail stop signature scheme and two (k.n) threshold undeniable signature schemes. We use [10] as the original fail stop signature scheme, and use [3] and [2] as the original undeniable signature schemes. Since all these schemes are based on the discrete log problem, we can use the same technique.

  • PDF

ERROR ESTIMATES FOR THE FULLY DISCRETE STABILIZED GAUGE-UZAWA METHOD -PART I: THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.125-150
    • /
    • 2013
  • The stabilized Gauge-Uzawa method (SGUM), which is a second order projection type algorithm to solve the time-dependent Navier-Stokes equations, has been newly constructed in 2013 Pyo's paper. The accuracy of SGUM has been proved only for time discrete scheme in the same paper, but it is crucial to study for fully discrete scheme, because the numerical errors depend on discretizations for both space and time, and because discrete spaces between velocity and pressure can not be chosen arbitrary. In this paper, we find out properties of the fully discrete SGUM and estimate its errors and stability to solve the evolution Navier-Stokes equations. The main difficulty in this estimation arises from losing some cancellation laws due to failing divergence free condition of the discrete velocity function. This result will be extended to Boussinesq equations in the continuous research (part II) and is essential in the study of part II.

ERROR ESTIMATES FOR A GALERKIN METHOD FOR A COUPLED NONLINEAR SCHRÖDINGER EQUATIONS

  • Omrani, Khaled;Rahmeni, Mohamed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.219-244
    • /
    • 2020
  • In this paper, we approximate the solution of the coupled nonlinear Schrödinger equations by using a fully discrete finite element scheme based on the standard Galerkin method in space and implicit midpoint discretization in time. The proposed scheme guarantees the conservation of the total mass and the energy. First, a priori error estimates for the fully discrete Galerkin method is derived. Second, the existence of the approximated solution is proved by virtue of the Brouwer fixed point theorem. Moreover, the uniqueness of the solution is shown. Finally, convergence orders of the fully discrete Crank-Nicolson scheme are discussed. The end of the paper is devoted to some numerical experiments.

MARKOVIAN EARLY ARRIVAL DISCRETE TIME JACKSON NETWORKS

  • Aboul-Hassan A.;Rabia S.I.
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.3
    • /
    • pp.281-303
    • /
    • 2006
  • In an earlier work, we investigated the problem of using linear programming to bound performance measures in a discrete time Jackson network. There it was assumed that the system evolution is controlled by the early arrival scheme. This assumption implies that the system can't be modelled by a Markov chain. This problem was resolved and performance bounds were calculated. In the present work, we use a modification of the early arrival scheme (without corrupting it) in order to make the system evolves as a Markov chain. This modification enables us to obtain explicit expressions for certain moments that could not be calculated explicitly in the pure early arrival scheme setting. Moreover, this feature implies a reduction in the linear program size as well as the computation time. In addition, we obtained tighter bounds than those appeared before due to the new setting.

UNCONDITIONAL STABILITY AND CONVERGENCE OF FULLY DISCRETE FEM FOR THE VISCOELASTIC OLDROYD FLOW WITH AN INTRODUCED AUXILIARY VARIABLE

  • Huifang Zhang;Tong Zhang
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.273-302
    • /
    • 2023
  • In this paper, a fully discrete numerical scheme for the viscoelastic Oldroyd flow is considered with an introduced auxiliary variable. Our scheme is based on the finite element approximation for the spatial discretization and the backward Euler scheme for the time discretization. The integral term is discretized by the right trapezoidal rule. Firstly, we present the corresponding equivalent form of the considered model, and show the relationship between the origin problem and its equivalent system in finite element discretization. Secondly, unconditional stability and optimal error estimates of fully discrete numerical solutions in various norms are established. Finally, some numerical results are provided to confirm the established theoretical analysis and show the performances of the considered numerical scheme.