• Title/Summary/Keyword: discrete models

Search Result 632, Processing Time 0.029 seconds

Implementation of the submarine diving simulation in a distributed environment

  • Ha, Sol;Cha, Ju-Hwan;Roh, Myung-Il;Lee, Kyu-Yeul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.211-227
    • /
    • 2012
  • To implement a combined discrete event and discrete time simulation such as submarine diving simulation in a distributed environment, e.g., in the High Level Architecture (HLA)/Run-Time Infrastructure (RTI), a HLA interface, which can easily connect combined models with the HLA/RTI, was developed in this study. To verify the function and performance of the HLA interface, it was applied to the submarine dive scenario in a distributed environment, and the distributed simulation shows the same results as the stand-alone simulation. Finally, by adding a visualization model to the simulation and by editing this model, we can confirm that the HLA interface can provide user-friendly functions such as adding new model and editing a model.

Control of Discrete-Time Chaotic Systems Using Model-Based Control (모델 기준 제어를 이용한 이산치 혼돈 시스템의 제어)

  • Park, Kwang-Sung;Joo, Jin-Man;Park, Jin-Bae;Choi, Yoon-Ho;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1056-1059
    • /
    • 1996
  • In this study, a new OSA controller is proposed for controlling discrete-time chaotic systems efficiently. A new OSA controller uses NARMAX models, and its feedback gain is designed on the basis of conventional linear control theory. In order to evaluate the performance of a new OSA controller, a new OSA controller is applied to Henon system which is a discrete-time chaotic system, and then the control performance of a new OSA controller are compared with that of the previous model-base controller through computer simulations.

  • PDF

병렬분산 환경에서의 DEVS형식론의 시뮬레이션

  • Seong, Yeong-Rak;Jung, Sung-Hun;Kon, Tag-Gon;Park, Kyu-Ho-
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.5-5
    • /
    • 1992
  • The DEVS(discrete event system specification) formalism describes a discrete event system in a hierarchical, modular form. DEVSIM++ is C++ based general purpose DEVS abstract simulator which can simulate systems to be modeled by the DEVS formalism in a sequential environment. We implement P-DEVSIM++ which is a parallel version of DEVSIM++. In P-DEVSIM++, the external and internal event of models can be processed in parallel. To process in parallel, we introduce a hierarchical distributed simulation technique and some optimistic distributed simulation techniques. But in our algorithm, the rollback of a model is localized itself in contrast to the Time Warp approach. To evaluate its performance, we simulate a single bus multiprocessor architecture system with an external common memory. Simulation result shows that significant speedup is made possible with our algorithm in a parallel environment.

  • PDF

System Realization by Using Inverse Discrete Fourier Transformation for Structural Dynamic Models

  • Kim, Hyeung Y.;W. B. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.289-294
    • /
    • 1998
  • The distributed-parameter structures expressed with the partial differential equations are considered as the infinite-dimensional dynamic system. For implementation of a controller in multivariate systems, it is necessary to derive the state-space reduced order model. By the eigensystem realization algorithm, we can yield tile subspace system with the Markov parameters derived from the measured frequency response function by the inverse discrete Fourier transformation. We also review the necessary conditions for the convergence of the approximation system and the error bounds in terms of the singular values of Markov-parameter matrices. To determine the natural frequencies and modal damping ratios, the modal coordinate transformation is applied to the realization system. The vibration test for a smart structure is performed to provide the records of frequency response functions used in the subspace system realization.

  • PDF

Investigating the Impact of Discrete Emotions Using Transfer Learning Models for Emotion Analysis: A Case Study of TripAdvisor Reviews

  • Dahee Lee;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • v.34 no.2
    • /
    • pp.372-399
    • /
    • 2024
  • Online reviews play a significant role in consumer purchase decisions on e-commerce platforms. To address information overload in the context of online reviews, factors that drive review helpfulness have received considerable attention from scholars and practitioners. The purpose of this study is to explore the differential effects of discrete emotions (anger, disgust, fear, joy, sadness, and surprise) on perceived review helpfulness, drawing on cognitive appraisal theory of emotion and expectation-confirmation theory. Emotions embedded in 56,157 hotel reviews collected from TripAdvisor.com were extracted based on a transfer learning model to measure emotion variables as an alternative to dictionary-based methods adopted in previous research. We found that anger and fear have positive impacts on review helpfulness, while disgust and joy exert negative impacts. Moreover, hotel star-classification significantly moderates the relationships between several emotions (disgust, fear, and joy) and perceived review helpfulness. Our results extend the understanding of review assessment and have managerial implications for hotel managers and e-commerce vendors.

Logical Analysis of Real-time Discrete Event Control Systems Using Communicating DEVS Formalism (C-DEVS형식론을 이용한 실시간 이산사건 제어시스템의 논리 해석 기법)

  • Song, Hae Sang;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.35-46
    • /
    • 2012
  • As complexity of real-time systems is being increased ad hoc approaches to analysis of such systems would have limitations in completeness and coverability for states space search. Formal means using a model-based approach would solve such limitations. This paper proposes a model-based formal method for logical analysis, such as safety and liveness, of real-time systems at a discrete event system level. A discrete event model for real-time systems to be analyzed is specified by DEVS(Discrete Event Systems Specification) formalism, which specifies a discrete event system in hierarchical, modular manner. Analysis of such DEVS models is performed by Communicating DEVS (C-DEVS) formalism of a timed global state transition specification and an associated analysis algorithm. The C-DEVS formalism and an associated analysis algorithm guarantees that all possible states for a given system are visited in an analysis phase. A case study of a safety analysis for a rail road crossing system illustrates the effectiveness of the proposed method of the model-based approach.

On the usefulness of discrete element computer modeling of particle packing for material characterization in concrete technology

  • Stroeven, P.;Hu, J.;Stroeven, M.
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.133-153
    • /
    • 2009
  • Discrete element modeling (DEM) in concrete technology is concerned with design and use of models that constitute a schematization of reality with operational potentials. This paper discusses the material science principles governing the design of DEM systems and evaluates the consequences for their operational potentials. It surveys the two families in physical discrete element modeling in concrete technology, only touching upon probabilistic DEM concepts as alternatives. Many common DEM systems are based on random sequential addition (RSA) procedures; their operational potentials are limited to low configuration-sensitivity features of material structure, underlying material performance characteristics of low structure-sensitivity. The second family of DEM systems employs concurrent algorithms, involving particle interaction mechanisms. Static and dynamic solutions are realized to solve particle overlap. This second family offers a far more realistic schematization of reality as to particle configuration. The operational potentials of this family involve valid approaches to structure-sensitive mechanical or durability properties. Illustrative 2D examples of fresh cement particle packing and pore formation during maturation are elaborated to demonstrate this. Mainstream fields of present day and expected application of DEM are sketched. Violation of the scientific knowledge of to day underlying these operational potentials will give rise to unreliable solutions.

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.

Semiparametric Evaluation of Environmental Goods: Local Linear Model Approach

  • Jeong, Ki-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.209-216
    • /
    • 2003
  • Contingent valuation method (CVM) is a main evaluation method of nonmarket goods for which markets either do not exist at all or do exist only incompletely; an example is environmental good. A dichotomous choice approach, the most popular type of CVM in environmental economics, employs binary discrete choice models as statistical estimation models. In this paper, we propose a semiparametric dichotomous choice CVM method using local linear model of Fan and Gijbels (1996) in which probability distribution of error term is specified parametrically but latent structural function is specified nonparametrically. The computation procedures of the proposed method are illustrated with a simple design of simulations.

  • PDF

Comparison of Lasso Type Estimators for High-Dimensional Data

  • Kim, Jaehee
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.349-361
    • /
    • 2014
  • This paper compares of lasso type estimators in various high-dimensional data situations with sparse parameters. Lasso, adaptive lasso, fused lasso and elastic net as lasso type estimators and ridge estimator are compared via simulation in linear models with correlated and uncorrelated covariates and binary regression models with correlated covariates and discrete covariates. Each method is shown to have advantages with different penalty conditions according to sparsity patterns of regression parameters. We applied the lasso type methods to Arabidopsis microarray gene expression data to find the strongly significant genes to distinguish two groups.