• Title/Summary/Keyword: discrete combined analysis

Search Result 61, Processing Time 0.026 seconds

An Optimal Design of the Rotor of BLDC Motors for Noise Reduction (BLDC 모터의 소음 저감을 위한 로터부 구조 최적설계)

  • Kim, Ji-Hoon;Ko, Kang-Ho;Kim, Min-Soo;Heo, Seoung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.972-975
    • /
    • 2004
  • In order to reduce the noise of BLDC motor, a systematic optimization procedure for rotor structure is presented. The noise index is defined as the sum of volume velocity of FE-model that are calculated at the dominant frequencies during dehydration process, which is based on the principle of radiation simple volume source. Then, the five design variables are selected to represent the shape and layout or rotor structure. This discrete design optimization problem for minimizing the noise index is solved by 3-level orthogonal array based effect analysis. Finally, the response surface method (RSM) combined optimization approach is employed for more refining the approximate optimum.

  • PDF

A Study on the natural Convection and Radiation in a Rectangular Enclosure with Ceiling Vent (천장개구부를 갖는 정사각형 밀폐공간내의 자연대류-복사 열전달에 관한 연구)

  • Park Chan-kuk;Chu Byeong-gil;Kim chol;Jung Jai-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 1998
  • This study investigated the natural convection and radiation in a rectangular enclosure with ceiling vent experimentally and numerically. A heat source is located on the center of the bottom surface. The analysis was peformed a pure convection and is combination of natural convection and radiation. The shape of the considered two dimensional model is a square whose center of ceiling($30\%$) is opened. The numerical simulations are carried out for the pure natural convection case and the combined heat transfer case by using the SIMPLE algorithm. For the turbulent flow, Reynolds stresses are closed by the standard $k-{\epsilon}$ model and the wall function is used to determine the wall boundary conditions. The experiment was performed on the same geometrical shape as the computations. The radiative heat transfer is analized by the S-N discrete ordinates method. The results of pure natural convection are compared with those of combined heat transfer by the velocity vectors, stream lines, isothermal lines. The results obtained are as follows 1. Comparing the results of pure convection with those of the combined convection-radiation through the shape of stream lines, isothermal lines are similar to each other. 2. The temperature fields obtained by numerical method are compared to those obtained by experimental one, and it is found that they are showed mean relative error $8.5\%$. 3. Visualization bt smoke is similar to computational results.

  • PDF

Advanced discretization of rock slope using block theory within the framework of discontinuous deformation analysis

  • Wang, Shuhong;Huang, Runqiu;Ni, Pengpeng;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.723-738
    • /
    • 2017
  • Rock is a heterogeneous material, which introduces complexity in the analysis of rock slopes, since both the existing discontinuities within the rock mass and the intact rock contribute to the degradation of strength. Rock failure is often catastrophic due to the brittle nature of the material, involving the sliding along structural planes and the fracturing of rock bridge. This paper proposes an advanced discretization method of rock mass based on block theory. An in-house software, GeoSMA-3D, has been developed to generate the discrete fracture network (DFN) model, considering both measured and artificial joints. Measured joints are obtained from the photogrammetry analysis on the excavation face. Statistical tools then facilitate to derive artificial joints within the rock mass. Key blocks are searched to provide guidance on potential reinforcement measures. The discretized blocky system is subsequently implemented into a discontinuous deformation analysis (DDA) code. Strength reduction technique is employed to analyze the stability of the slope, where the factor of safety can be obtained once excessive deformation of slope profile is observed. The combined analysis approach also provides the failure mode, which can be used to guide the choice of strengthening strategy if needed. Finally, an illustrated example is presented for the analysis of a rock slope of 20 m height inclined at $60^{\circ}$ using combined GeoSMA-3D and DDA calculation.

Estimation of Strength and Deformation Modulus of the 3-D DFN System Using the Distinct Element Method (개별요소법을 이용한 삼차원 DFN 시스템의 강도 및 변형계수 추정)

  • Ryu, Seongjin;Um, Jeong-Gi;Park, Jinyong
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.15-28
    • /
    • 2020
  • In this study, a procedure was introduced to estimate strength and deformation modulus of the 3-D discrete fracture network(DFN) systems using the distinct element method(DEM). Fracture entities were treated as non-persistent square planes in the DFN systems. Systematically generated fictitious fractures having similar mechanical characteristics of intact rock were combined with non-persistent real fractures to create polyhedral blocks in the analysis domain. Strength and deformation modulus for 10 m cube domain of various deterministic and stochastic 3-D DFN systems were estimated using the DEM to explore the applicability of suggested method and to examine the effect of fracture geometry on strength and deformability of DFN systems. The suggested procedures were found to effective in estimating anisotropic strength and deformability of the 3-D DFN systems.

Aeroacoustics Analysis and Noise Reduction of Dual Type Combined Fan using Lattice-Boltzmann Method (Lattice-Boltzmann Method를 이용한 이중구조팬의 공력소음 해석 및 저감)

  • Kim, Wootaek;Ryu, Minhyung;Kim, Jinwook;Ho, Sunghwan;Cho, Leesang;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.381-390
    • /
    • 2016
  • In this study, aeroacoustic characteristics of combined fan are investigated and noise was reduced by applying Serrated Trailing Edge which is known as the method to reduce fan noises. Unsteady CFD (Computational Fluid Dynamics) analysis was carried out using Lattice Boltzmann Method(LBM) to figure out the combined fan's aeroacoustics and experimental results was used to verify simulation results. Results show that different BPFs are generated at the each inner fan and outer fan on the different frequency while Blade Passing Frequency(BPF) of general fans is constant on the entire frequency range. Boundary vortex and vortex shedding are suppressed or dispersed by applying the Serrated Trailing Edge to the inner fan. Furthermore, broadband noise and fan's torque are reduced.

Analysis of Transient Scattering from Arbitrarily Shaped Three-Dimensional Conducting Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 삼차원 임의형태 도체 구조물의 전자파 지연산란 해석)

  • Jung, Baek-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.551-558
    • /
    • 2002
  • A time-domain combined field integral equation (CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time-domain electric field integral equation (EFIE) with the magnetic field integral equation (MFIE). The time derivative of the magnetic vector potential in EFIE is approximated using a central finite difference approximation and the scalar potential is averaged over time. The time-domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. The incident spectrum of the field may contain frequency components, which correspond to the internal resonance of the structure. For the numerical solution, we consider both the explicit and implicit scheme and use two different kinds of Gaussian pulses, which may contain frequencies corresponding to the internal resonance. Numerical results for the EFIE, MFIE, and CFIE are presented and compared with those obtained from the inverse discrete Fourier transform (IDFT) of the frequency-domain CFIE solution.

Earthquake Response Analysis of Cylindrical Liquid-Storage Tanks Considering Nonlinear Fluid-Structure Soil Interactions (비선형 유체-구조물-지반 상호작용 고려한 원통형 액체저장탱크의 지진응답해석)

  • Jin Ho Lee;Jeong-Rae Cho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.133-141
    • /
    • 2024
  • Considering fluid-structure-soil interactions, a finite-element model for a liquid-storage tank is presented and the nonlinear earthquake response analysis is formulated. The tank structure is modeled considering shell elements with geometric and material nonlinearities. The fluid is represented by acoustic elements and combined with the structure using interface elements. To consider the soil-structure interactions, the near- and far-field regions of soil are modeled with solid elements and perfectly matched discrete layers, respectively. This approach is applied to the seismic fragility analysis of a 200,000 kL liquid-storage tank. The fragility curve is observed to be influenced by the amplification and filtering of rock outcrop motions at the site when the soil-structure interactions are considered.

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.

Wavelet-based damage detection method for a beam-type structure carrying moving mass

  • Gokdag, Hakan
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.81-97
    • /
    • 2011
  • In this research, the wavelet transform is used to analyze time response of a cracked beam carrying moving mass for damage detection. In this respect, a new damage detection method based on the combined use of continuous and discrete wavelet transforms is proposed. It is shown that this method is more capable in making damage signature evident than the traditional two approaches based on direct investigation of the wavelet coefficients of structural response. By the proposed method, it is concluded that strain data outperforms displacement data at the same point in revealing damage signature. In addition, influence of moving mass-induced terms such as gravitational, Coriolis, centrifuge forces, and pure inertia force along the deflection direction to damage detection is investigated on a sample case. From this analysis it is concluded that centrifuge force has the most influence on making both displacement and strain data damage-sensitive. The Coriolis effect is the second to improve the damage-sensitivity of data. However, its impact is considerably less than the former. The rest, on the other hand, are observed to be insufficient alone.

Analysis and Control of Low Frequency Oscillation using TCSC Small Signal Model by Control of Firing Angles (TCSC의 소신호 모형을 이용한 점호각 제어에 의한 저주파 진동 감쇠 효과 해석 및 제어)

  • Kim, Tae-Hyun;Seo, Jang-Cheol;Park, Jong-Keun;Moon, Seung-Ill;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.120-124
    • /
    • 1995
  • TCSC can not only increase power flow but also damp low frequency oscillation by controlling firing angles of thyristors. But, a model considering voltage, current firing angles is not derived. This paper used a small signal model considirng these variables which was derived in paper [1]. TCSC model is combined with swing equation. Being related to rotor angles and firing angles of thyristors, current and synchronizing torque coefficient is reformulated. Because firing angles of thyristors can be controlled only twice within one period, swing equation is transformed to discrete time model. It is shown that low frequency oscillation can be damped by controlling firing angles in one machine infinite bus power system.

  • PDF