• 제목/요약/키워드: discovery framework

검색결과 92건 처리시간 0.025초

시공간 지식탐사를 위한 3계층 프레임워크 (A 3-Layered Framework for Spatiotemporal Knowledge Discovery)

  • 이준욱;남광우;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제31권3호
    • /
    • pp.205-218
    • /
    • 2004
  • 시공간 데이타관리를 위한 데이타베이스 기술이 발전함에 따라 방대한 시공간 데이타 집합으로부터 의미 있는 시공간 지식 탐사를 필요로 하는 시공간 응용 서비스가 증대되고 있다. 이 논문에서는 시공간 지식 탐사 기법 개발을 지원하기 위하여 시공간 3계층 지식탐사 프레임워크를 제안하였다. 프레임 워크에서는 시공간 지식 탐사 문제 정의를 위한 기반 모델을 제시하여 시공간 지식에 대한 정의 및 관계를 표현할 수 있도록 하였다. 또한 시공간 지식 탐사 시스템의 구성요소 및 구현 모델을 제시하였다. 이 논문에서 제안한 시공간 지식 탐사를 위한 프레임워크는 앞으로 새로운 유형의 시공간 지식 탐사 기법 개발에 적용될 수 있는 특징을 포함하고 있다. 제안한 프레임워크는 시공간 이동 패턴과 같은 새로운 유형의 지식 탐사 기법 개발 지원에 있어 시공간 데이타 집합, 정보 및 지식에 대한 관계 규정과 각 요소에 대한 표현 모델을 제공함으로써 지식 탐사 문제를 형식화하고 단순화할 수 있다.

A Knowledge Discovery Framework for Spatiotemporal Data Mining

  • Lee, Jun-Wook;Lee, Yong-Joon
    • Journal of Information Processing Systems
    • /
    • 제2권2호
    • /
    • pp.124-129
    • /
    • 2006
  • With the explosive increase in the generation and utilization of spatiotemporal data sets, many research efforts have been focused on the efficient handling of the large volume of spatiotemporal sets. With the remarkable growth of ubiquitous computing technology, mining from the huge volume of spatiotemporal data sets is regarded as a core technology which can provide real world applications with intelligence. In this paper, we propose a 3-tier knowledge discovery framework for spatiotemporal data mining. This framework provides a foundation model not only to define the problem of spatiotemporal knowledge discovery but also to represent new knowledge and its relationships. Using the proposed knowledge discovery framework, we can easily formalize spatiotemporal data mining problems. The representation model is very useful in modeling the basic elements and the relationships between the objects in spatiotemporal data sets, information and knowledge.

A Framework for Developing interoperable Knowledge Discovery System

  • Li, Sheng-Tun;Shue, Li-Yen
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.435-440
    • /
    • 2001
  • The development of web-aware knowledge discovery system has received a great deal of attention in recent years. It plays a key-enabling role for competitive businesses in the E-commerce era. One of the challenges in developing web-aware knowledge discovery systems is to integrate and coordinate and coordinate existing standalone or legacy knowledge discovery applications in a seamless manner, so that cost-effective systems can be developed without the need of costly proprietary products. In this paper, we present an approach for developing a framework of web-aware interoperable knowledge discovery system to achieve this purpose. This approach applies RMI and high-level code wrapper of Java distributed object computing to address the issues of interoperability in heterogeneous environments, which includes programming language, platform, and visual object model. The effectiveness of the proposed framework is demonstrated through the integration and extension of the two well-known standalone knowledge discovery tools, SOM_PAK and Nenet. It confirms that a variety of interoperable knowledge discovery systems can be constructed efficiently on the basis of the framework to meet various requirements of knowledge discovery tasks.

  • PDF

프로세스 마이닝과 리엔지니어링을 위한 제어경로 기반 프로세스 그룹 발견 프레임워크와 실험적 검증 (Control-Path Driven Process-Group Discovery Framework and its Experimental Validation for Process Mining and Reengineering)

  • 응웬 탄 하이;김광훈
    • 인터넷정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.51-66
    • /
    • 2023
  • 본 논문에서는 비즈니스 프로세스 모델의 생명주기관리를 지원하는 대표적인 지식발견기술인 프로세스 마이닝과 지식개선기술인 프로세스 리엔지니어링 접근방법을 기반으로 하는 새로운 유형의 프로세스 발견 프레임워크를 제안한다. 또한, 제안된 프레임워크를 기반으로 하는 프로세스 마이닝 시스템을 개발하고, 이를 통한 실험적 검증을 수행한다. 실험적 효과검증에 적용된 프로세스 실행 이벤트 로그를 특별히 프로세스 빅-로그(Process BIG-Logs)라고 정의하고, 분산 비즈니스 프로세스 관리 시스템의 로깅메커니즘과 연계된 조각-실행로그이력들을 클러스터링하는 전처리과정을 거친 마이닝의 입력데이터세트로 활용한다. 결과적으로, 본 논문에서는 구조적 정보제어넷기반 프로세스 마이닝 알고리즘인 ρ-알고리즘을 개선한 제어경로기반 프로세스 그룹 발견 알고리즘과 프레임워크를 설계 및 구현하고, 구현된 시스템을 이용하여 제안한 알고리즘과 프레임워크의 정확성을 실험적으로 검증한다.

그리드 기반의 고성능 과학기술지식처리 프레임워크 개발 (Development of a Grid-based Framework for High-Performance Scientific Knowledge Discovery)

  • 정창후;최성필;윤화묵;최윤수
    • 한국콘텐츠학회논문지
    • /
    • 제9권12호
    • /
    • pp.877-885
    • /
    • 2009
  • 본 논문은 그리드 컴퓨팅을 이용한 고성능 과학기술지식처리 프레임워크인 SINDI-Grid의 개발에 관련된 연구이다. SINDI-Grid 프레임워크는 대용량의 데이터 저장소 및 고속의 컴퓨팅 파워를 제공하는 그리드 컴퓨팅의 장점을 이용하여 분산 데이터 분석과 과학기술지식처리를 위한 다양한 그리드 서비스들을 제공한다. 그리고 SINDI-Workflow 도구는 이러한 서비스들을 이용하여 다양한 지식처리 알고리즘을 통합하는 복잡한 과학기술지식처리 애플리케이션을 설계하고 실행하는 역할을 수행한다.

SI산업에서의 지식경영을 위한 지식발견 및 창출 기법에 관한 연구 (A Study on Knowledge Discovery and Creation Techniques for Knowledge Management in SI Industry)

  • 김현수
    • Asia pacific journal of information systems
    • /
    • 제11권2호
    • /
    • pp.99-119
    • /
    • 2001
  • The creation of knowledge is a major concern for knowledge management practice. In particular, effective knowledge creation is one of the critical success factor in SI(System Integration) industry. This paper designs a framework of effective knowledge creation methods for organizations in SI industry. First, we give a comprehensive survey on knowledge creation and discovery methods. And the structure of SI knowledge has been analysed. Also, characteristics of knowledge management processes of SI industry have been surveyed and analysed. A framework for effective knowledge creation of SI organization has been discussed based on the characteristics of SI knowledge and knowledge management processes. Organizational issues and theoretical issues of the methods have been discussed. Future research will be needed to expand the current framework and to examine the effectiveness of the proposed framework.

  • PDF

TOE 프레임워크와 가치기반수용모형 기반의 인공지능 신약개발 시스템 활용의도에 관한 실증 연구 (A Study on the Intention to use the Artificial Intelligence-based Drug Discovery and Development System using TOE Framework and Value-based Adoption Model)

  • 김영대;이원석;장상현;신용태
    • 한국IT서비스학회지
    • /
    • 제20권3호
    • /
    • pp.41-56
    • /
    • 2021
  • New drug discovery and development research enable clinical treatment that saves human life and improves the quality of life, but the possibility of success with new drugs is significantly low despite a long time of 14 to 16 years and a large investment of 2 to 3 trillion won in traditional methods. As artificial intelligence is expected to radically change the new drug development paradigm, artificial intelligence new drug discovery and development projects are underway in various forms of collaboration, such as joint research between global pharmaceutical companies and IT companies, and government-private consortiums. This study uses the TOE framework and the Value-based Adoption Model, and the technical, organizational, and environmental factors that should be considered for the acceptance of AI technology at the level of the new drug research organization are the value of artificial intelligence technology. By analyzing the explanatory power of the relationship between perception and intention to use, it is intended to derive practical implications. Therefore, in this work, we present a research model in which technical, organizational, and environmental factors affecting the introduction of artificial intelligence technologies are mediated by strategic value recognition that takes into account all factors of benefit and sacrifice. Empirical analysis shows that usefulness, technicality, and innovativeness have significantly affected the perceived value of AI drug development systems, and that social influence and technology support infrastructure have significant impact on AI Drug Discovery and Development systems.

Data Mining in Marketing: Framework and Application to Supply Chain Management

  • Kim, Steven-H;Min, Sung-Hwan
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.125-133
    • /
    • 1999
  • The objective of knowledge discovery and data mining lies in the generation of useful insights from a store of data. This paper presents a framework for knowledge mining to provide a systematic approach to the selection and deployment of tools for automated learning. Every methodology has its strengths and limitations. Consequently, a multistrategy approach may be required to take advantage of the strengths of disparate technique while circumventing their individual limitations. For concreteness, the general framework for data mining in marketing is examined in the context of developing agents for optimizing a supply chain network.

  • PDF

Data Mining in Marketing: Framework and Application to Supply Chain Management

  • Kim, Steven H.;Min, Sung-Hwan
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.125-133
    • /
    • 1999
  • The objective of knowledge discovery and data mining lies in the generation of useful insights from a store of data. This paper presents a framework for knowledge mining to provide a systematic approach to the selection and deployment of tools for automated learning. Every methodology has its strengths and limitations. Consequently, a multistrategy approach may be required to take advantage of the strengths of disparate technique while circumventing their individual limitations. For concreteness, the general framework for data mining in marketing is examined in the context of developing agents for optimizing a supply chain network.

  • PDF

Synchronous Price Discovery of Cross-Listings

  • Chen, Haiqiang;Choi, Moon Sub
    • Management Science and Financial Engineering
    • /
    • 제20권1호
    • /
    • pp.11-16
    • /
    • 2014
  • Extending from Grossman and Stiglitz (1980), we provide an asset pricing model of a synchronously traded cross-listed pair under information asymmetry. Following Garbade and Silber (1983), the model further embraces multi-market price discovery in a dynamic framework. The implications are as follows: The price sensitivity of holdings is higher for informed traders than for uninformed traders; the largest cross-border price spread occurs in the absence of arbitrageurs; price discovery is more likely in markets with a larger population of informed traders; and parity convergence accelerates with a higher price elasticity of demand of arbitrageurs.