• Title/Summary/Keyword: discontinuous arrangement

Search Result 20, Processing Time 0.02 seconds

Design of Auxiliary Teeth on the Edge of Stationary Discontinuous Armature PM-LSM with Concentrated Winding

  • Kim, Sung-Jin;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.352-356
    • /
    • 2013
  • Recently, the stationary discontinuous armature, Permanent Magnet Linear Synchronous Motor (PM-LSM), was suggested as a driving source for long-distance transportation system. However, as these motors arrange armatures discontinuously, an edge occurs thereby leading to a cogging force. This works as a factor that hinders the acceleration and deceleration that takes place when movers enter into and eject from armatures. Therefore, in this study, the installation of auxiliary teeth on the edge of the armature of PM-LSM is suggested in order to reduce the cogging force caused by the edge when the armature is placed in a discontinuous arrangement. Auxiliary teeth are optimally designed by a 2-D numerical analysis using the finite element method was performed to generate the optimum design of the auxiliary teeth. The validity of the study was confirmed through the comparison of the cogging force induced at the edge in respect to the design parameter using the basic model.

A Study on the Reduction of Cogging Force of Stationary Discontinuous Armature Linear Synchronous Motor Using Auxiliary Teeth

  • Kim, Yong-Jae;Lee, Kyu-Myung;Watada, Masaya
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • The stationary discontinuous armatures that are used in permanent magnet linear synchronous motors (PM-LSMs) have been proposed as a driving source for transportation systems. However, the stationary discontinuous armature PM-LSM contains the outlet edges which always exist as a result of the discontinuous arrangement of the armature. For this reason, the high alteration of the outlet edge cogging force produced between the armature's core and the mover's permanent magnet when a mover passes the boundary between the armature's installation part and non-installation part has been indicated as a problem. Therefore, we have examined the outlet edge cogging force by installing the auxiliary teeth at the armature's outlet edge in order to minimize the outlet edge cogging force generated when the armature is arranged discontinuously. Moreover, we obtained the calculation by analyzing the shape of the auxiliary teeth in which the outlet edge cogging force is minimized the most.

A Study on the reduction of cogging force of stationary discontinuous armature Permanent Magnet Linear Synchronous Motor by change in Auxiliary pole (보조극 변화에 따른 전기자 분산배치 영구자석형 리니어 동기 모터의 코깅력 저감에 관한 연구)

  • Lee, Kyu-Myung;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.613-619
    • /
    • 2010
  • The stationary discontinuous armatures that are used in permanent magnet linear synchronous motors (PM-LSMs) have been proposed as a driving source for transportation systems. However, the stationary discontinuous armature PM-LSM contains the outlet edges which always exist as a result of the discontinuous arrangement of the armature. For this reason, the outlet edge cogging force generated between the armature's core and the mover's permanent magnet. This paper contemplated the outlet cogging for ceaccording to 2-D numerical analysis by FEM. We installed the auxiliary pole for in order to minimize the outlet cogging force.

Reduction Design of End Edge Effect in Stationary Discontinuous Armature PMLSM combined with Skewed Magnets and Stair Shape Auxiliary Teeth

  • Kim, Min-Seok;Kim, Yong-Jae
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.362-366
    • /
    • 2014
  • In recent years, a permanent magnet linear synchronous motor (PMLSM) has been used in various kinds of transportation applications for its relative high power density and efficiency. The general transportation system arranges the armature on the full length of transportation lines. However, when this method is applied to long distance transportation system, it causes increase of material cost and manufacturing time. Thus, in order to resolve this problem, we suggested stationary discontinuous armature PMLSM. However, the stationary discontinuous armature PMLSM contains the edges which always exist as a result of the discontinuous arrangement of the armature. These edges become a problem because the cogging force that they exert bad influences the controllability of the motor. Therefore, in this paper we proposed the combination of skewed magnets and stair shape auxiliary teeth to reduce the force by edge effect. Moreover, we analyzed the influence of the design factors by using a 3-D finite element method (FEM) simulation tool.

A Study on Auxiliary Pole and Teeth Combinations for Edge Effect Reduction of Stationary Discontinuous Armature PM-LSM with Concentrated winding (전기자 분산배치 집중권 PMLSM의 단부 효과 저감을 위한 보조극과 보조치 조합에 관한 연구)

  • Kim, Sung-Jin;Kim, Yong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1611-1616
    • /
    • 2012
  • Recently, the stationary discontinuous armature Permanent Magnet Linear Synchronous Motor(PM-LSM) was suggested as a driving source for long-distance transportation system. However, as these motors arrange armatures discontinuously, there occurs an edge which causes the cogging force. This works as a factor that bothers acceleration and deceleration that takes place when movers enter into and eject from the armatures. Therefore, installation of auxiliary teeth on the edge of armature of PM-LSM is suggested in order to reduce cogging force caused by the edge when the armature is placed in a discontinuous arrangement. But length of auxiliary teeth can be changed if install it with auxiliary pole in order to decrease more and more edge cogging force. On this, in the study, decided on a design variable of auxiliary teeth and used 2-D FEA, and examined edge cogging force characteristic along this in order to grasp length of auxiliary teeth changed according to installation positions of an auxiliary pole.

End Edge Cogging Force Minimization according to the Distance between Armatures of Stationary Discontinuous Armature PMLSM with Concentrated Winding (전기자 분산배치 집중권 PMLSM의 전기자 간격에 따른 단부 코깅력 최소화)

  • Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1241-1246
    • /
    • 2013
  • Currently, The general transportation system arranges the armature on the full length of transportation lines. However, when this method is applied to the long distance transportation system, it causes an increase of material cost and manufacturing time. Thus, in order to resolve this problem, discontinuous arrangement method of the armature has been proposed. However, in the method of using stationary discontinuous armatures, mover can stop in the freewheeling section which is non-installations section when disturbance is generated and the mover can not be moved because armature control is impossible. Thus, the distance determination of armature is very important. Also, when the armature is arranged discontinuously the edge always exists due to the structure. Due to this edge, the cogging force is greatly generated during the entry and ejection of the mover to the armature. This cogging force causes thrust force ripple generating noise, vibration and decline of performance, it must be reduced. Therefore, in this paper, we examined the end edge cogging force generated by the stationary discontinuous armatures through 2-D numerical analysis using finite element method (FEM) and we figured out distance of armature for end edge cogging force minimization.

A Study on Characteristics of the Flow Around Two Square Cylinders in a Tandem Arrangement Using Particle Image Velocimetry (PIV를 이용한 직렬배열에서의 두 정사각기둥 주위의 유동특성에 관한 연구)

  • Kim, Dong-Keon;Lee, Jong-Min;Seong, Seung-Hak;Yoon, Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1199-1208
    • /
    • 2005
  • The flow fields including velocities, turbulence intensities, Reynolds shear stress and turbulent kinetic energy were investigated using particle image velocimetry(PIV) to study the flow characteristics around two square cylinders in a tandem arrangement. The experiments were carried out in the range of the spacing from 1.0 to 4.0 widths of cylinder, Reynolds number of 5.3$\times$10$^{3}$ and 1.6$\times$10$^{4}$ respectively. Discontinuous jumping at the drag coefficient variation was found for two cylinders simultaneously when the spacing between two cylinders is varied. This phenomenon is attributed to a sudden change of the flow pattern which depends on the reattachment of the shear layer separated from the upstream cylinder. Near such a critical spacing, the changes of the flow fields as well as the effect of Reynolds number were studied in detail.

Thermo-hydraulic Effect of Tubular Heat Exchanger Fitted with Perforated Baffle Plate with Rectangular Shutter-type Deflector

  • Md Atiqur Rahman
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.191-199
    • /
    • 2024
  • A study was conducted on a tubular heat exchanger to improve its heat transfer rate by using a novel baffle plate design with discontinuous swirling patterns. The design consisted of perforated baffle plates with rectangular air deflectors positioned at varying angles. The tubes in the heat exchanger were arranged in a consistent alignment with the airflow direction and exposed to a uniform heat flux on their surfaces. Each baffle plate included sixteen deflectors inclined at the same angle and arranged in a clockwise pattern. This arrangement induced a swirling motion of the air inside a circular duct where the heated tubes were located, leading to increased turbulence and improved heat transfer on the tube surfaces. The spacing between the baffle plates was adjusted at different pitch ratios, and the Reynolds number was controlled within a range of 16,000 to 29,000. The effects of pitch ratios and inclination angles on the heat exchanger's performance were analyzed. The results indicated that using a baffle plate with rectangular deflectors inclined at 30° and a pitch ratio of 1.2 resulted in an average increase of 1.29 in the thermal enhancement factor.

The Analysis of Skewed Armature Effect for Reduction of End Edge Cogging Force of Stationary Discontinuous Armature PMLSM (전기자 분산배치 PMLSM의 단부 코깅력 저감을 위한 전기자 스큐각의 영향 분석)

  • Kim, Yong-Jae;Kim, Jae-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.243-248
    • /
    • 2014
  • The permanent magnet linear synchronous motors facilitate maintenance, for it is structurally simple compare to rotating machine and has lots of advantage such as a precision control, high speed, high thrust and so on. However, it causes an increase of material cost because of structural characteristics that need to arranges the armature on the full length of transportation lines. Thus, in order to resolve this problem, we propose the discontinuous arrangement method of the armature but the edge always exists due to the structure when the armature is arranged discontinuously. Due to this edge, the cogging force is greatly generated and it causes thrust force ripple generating noise, vibration and decline of performance. Therefore, in this paper, we examined the characteristic of end edge according to the skew angle through 3-D numerical analysis using finite element method(FEM) and improved the operation characteristics.

The Design of End Edge Shape for Reduction of Long-Distance Transportation Stationary Discontinuous Armature PMLSM Thrust Ripple with Distributed Winding (장거리 반송용 전기자 분산배치 분포권 PMLSM의 추력맥동 저감을 위한 단부형상 설계)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1675-1680
    • /
    • 2013
  • Recently, the permanent magnet linear synchronous motor as low noise, high speed and high thrust force transportation system has been proposed but this motor causes an increase of material cost because of its characteristic arranging the armature on the full length of transportation lines when this system is applied to the long distance transportation system. Therefore, we suggested discontinuous arrangement method of the armature to solve this problem. However, Detent force which causes thrust force ripple generating noise, vibration and decline of performance is generated when a mover pass between the armatures. Thus, in this paper, we examined characteristic of detent force to reduce the end edge effect according to the end edge teeth's height and auxiliary teeth and suggested the shape that can the most reduce the detent force.