• 제목/요약/키워드: discontinuous

검색결과 1,399건 처리시간 0.047초

A novel framework for correcting satellite-based precipitation products in Mekong river basin with discontinuous observed data

  • Xuan-Hien Le;Giang V. Nguyen;Sungho Jung;Giha Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.173-173
    • /
    • 2023
  • The Mekong River Basin (MRB) is a crucial watershed in Asia, impacting over 60 million people across six developing nations. Accurate satellite-based precipitation products (SPPs) are essential for effective hydrological and watershed management in this region. However, the performance of SPPs has been varied and limited. The APHRODITE product, a unique gauge-based dataset for MRB, is widely used but is only available until 2015. In this study, we present a novel framework for correcting SPPs in the MRB by employing a deep learning approach that combines convolutional neural networks and encoder-decoder architecture to address pixel-by-pixel bias and enhance accuracy. The DLF was applied to four widely used SPPs (TRMM, CMORPH, CHIRPS, and PERSIANN-CDR) in MRB. For the original SPPs, the TRMM product outperformed the other SPPs. Results revealed that the DLF effectively bridged the spatial-temporal gap between the SPPs and the gauge-based dataset (APHRODITE). Among the four corrected products, ADJ-TRMM demonstrated the best performance, followed by ADJ-CDR, ADJ-CHIRPS, and ADJ-CMORPH. The DLF offered a robust and adaptable solution for bias correction in the MRB and beyond, capable of detecting intricate patterns and learning from data to make appropriate adjustments. With the discontinuation of the APHRODITE product, DLF represents a promising solution for generating a more current and reliable dataset for MRB research. This research showcased the potential of deep learning-based methods for improving the accuracy of SPPs, particularly in regions like the MRB, where gauge-based datasets are limited or discontinued.

  • PDF

Simulation of the fracture of heterogeneous rock masses based on the enriched numerical manifold method

  • Yuan Wang;Xinyu Liu;Lingfeng Zhou;Qi Dong
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.683-696
    • /
    • 2023
  • The destruction and fracture of rock masses are crucial components in engineering and there is an increasing demand for the study of the influence of rock mass heterogeneity on the safety of engineering projects. The numerical manifold method (NMM) has a unified solution format for continuous and discontinuous problems. In most NMM studies, material homogeneity has been assumed and despite this simplification, fracture mechanics remain complex and simulations are inefficient because of the complicated topology updating operations that are needed after crack propagation. These operations become computationally expensive especially in the cases of heterogeneous materials. In this study, a heterogeneous model algorithm based on stochastic theory was developed and introduced into the NMM. A new fracture algorithm was developed to simulate the rupture zone. The algorithm was validated for the examples of the four-point shear beam and semi-circular bend. Results show that the algorithm can efficiently simulate the rupture zone of heterogeneous rock masses. Heterogeneity has a powerful effect on the macroscopic failure characteristics and uniaxial compressive strength of rock masses. The peak strength of homogeneous material (with heterogeneity or standard deviation of 0) is 2.4 times that of heterogeneous material (with heterogeneity of 11.0). Moreover, the local distribution of parameter values can affect the configuration of rupture zones in rock masses. The local distribution also influences the peak value on the stress-strain curve and the residual strength. The post-peak stress-strain curve envelope from 60 random calculations can be used as an estimate of the strength of engineering rock masses.

Adsorption of Three Chlorinated Herbicides on Two Activated Carbons: An Example of the Effect of Surface Charge, Pore Diameter and Molecular Size on the Adsorption Process

  • Pila Matias N.;Colasurdo Diego D.;Simonetti Sandra I.;Dodero Gabriela A.;Allegretti Patricia E.;Ruiz Danila L.;Laurella Sergio L.
    • Korean Chemical Engineering Research
    • /
    • 제61권1호
    • /
    • pp.97-108
    • /
    • 2023
  • Two carbonaceous adsorbents CAT and CARBOPAL were tested for reducing the concentration of the three herbicides in water: 2,4-D (2,4-dichlorophenoxyacetic acid), TCP (2,4,6-trichlorophenol) and metolachlor. Textural and chemical characterization of the adsorbents include nitrogen isotherms, FTIR, titration and thermogravimetric analyses. Adsorption was studied in discontinuous adsorption experiments at different pH values. The experimental adsorption isotherms data were fitted to four theoretical models. Adsorbent characterization reveals that CAT has higher micropore area, lower pore diameter and lower acidity than CARBOPAL. The adsorption is a second-order process and the isotherms best fitted to Sips model. The efficiency of the process depends mainly on the charge of the adsorbate for TCP and 2,4-D, but it depends on the charge of the surface for metolachlor. Adsorption capacity is higher on CAT for 2,4-D and TCP (small molecules), and it is higher on CARBOPAL for metolachlor (large molecules). Theoretical calculations clearly support this assumption.

Ca과 Y 복합 첨가가 AZ91 마그네슘 압출재의 시효 거동에 미치는 영향 (Effect of Combined Addition of Ca and Y on Aging Behavior of Extruded AZ91 Magnesium Alloy)

  • 김현지;김영민;배준호;박성혁
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.160-166
    • /
    • 2022
  • The purpose of this study is to investigate the effects of combined addition of Ca and Y on the precipitation and age-hardening behavior of an extruded AZ91 alloy by conducting the aging treatment at 200 ℃ for hot-extruded AZ91 and AZ91-0.3Ca-0.2Y alloys. In the AZ91 alloy, many Mg17Al12 discontinuous precipitate (DP) bands formed during air cooling immediately after extrusion are present, whereas in the AZ91-0.3Ca-0.2Y alloy, a few DP bands and numerous Al2Y, Al8Mn4Y, and Al2Ca phase particles are distributed along the extrusion direction. The peak-aging time of the AZ91-0.3Ca-0.2Y alloy is 16 hours, twice that of the AZ91 alloy. Although both alloys have similar hardness before aging treatment, the hardness after peak-aging treatment (i.e., peak hardness) of the AZ91-0.3Ca-0.2Y alloy is higher than that of the AZ91 alloy, as 93.1 and 88.7 Hv, respectively. The microstructures of both peak-aged alloys comprise DPs and continuous precipitates (CPs). However, the peak-aged AZ91-0.3Ca-0.2Y alloy has a smaller amount of DPs and a larger amount of CPs than the peak-aged AZ91 alloy. Additionally, the inter-particle spacings of DPs and CPs in the former are significantly narrower than those in the latter. These results demonstrate that the addition of small amounts of Ca and Y to a commercial AZ91 alloy considerably affects the formation rate, size, and amount of CPs and DPs during aging and resultant age-hardening behavior.

A Synthetic Analog of Resveratrol Inhibits the Proangiogenic Response of Liver Sinusoidal Cells during Hepatic Metastasis

  • Olaso, Elvira;Benedicto, Aitor;Lopategi, Aritz;Cossio, Fernando P.;Arteta, Beatriz
    • Biomolecules & Therapeutics
    • /
    • 제30권2호
    • /
    • pp.162-169
    • /
    • 2022
  • We utilized Fas21, a resveratrol analog, to modulate the function of hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the angiogenic phase of murine liver metastasis by B16 melanoma and 51b colorectal carcinoma. Preangiogenic micrometastases were treated with Fas21 (1 mg/kg/day) or vehicle during the development of intra-angiogenic tracts. Mice treated with Fas21 showed reduced liver tumor foci in both liver metastasis models. Micrometastases were classified immunohistochemically, as well as according to their position coordinates and connection to local microvasculature. The volume of liver occupied by sinusoidal-type foci, containing infiltrating angiogenic capillaries, decreased by ~50% in Fas21-treated mice compared to vehicle-treated ones in both tumor metastasis models. The volume of portal foci, containing peripheral neoangiogenesis within a discontinuous layer of myofibroblasts, was similar in all experimental groups in both tumor metastasis models, but displayed enhanced necrotic central areas devoid of angiogenesis following Fas21 treatment. As a result, sinusoidal tumors from mice treated with Fas21 showed a 50% reduction in desmin(+)/asma(+) HSCs and CD31(+) vessel density, and a 45% reduction in intrametastatic VEGF mRNA compared with sinusoidal tumors from vehicle-treated mice. Necrotic portal metastases increased 2-4-fold in treated mice. In vitro, Fas21 reduced VEGF secretion by HSCs and 51b cells dose-dependently. Additionally, HSCs migration in response to tumor soluble factors was dose-dependently diminished by Fas21, as was LSEC migration in response to HSCs and tumor soluble factors. Resveratrol analog Fas21 inhibits the proangiogenic response of HSCs and LSECs during the development of murine liver metastasis.

건물 파사드의 디자인 패턴과 감성 디자인 특성의 상관관계 분석 (Correlation Analysis of Design Pattern and Emotional Design Characteristics on the Building Facade)

  • 오영은;이현수
    • 디자인융복합연구
    • /
    • 제14권2호
    • /
    • pp.51-65
    • /
    • 2015
  • 본 연구의 목적은 건물 파사드 디자인을 효과적으로 지원 할 수 있는 패턴의 감성적인 디자인 특성을 도출하여 그 특성들의 상관관계를 분석하는 것이다. 본 논문에서 다루어지는 디자인 패턴은 Ben Pell이 제시한 5가지, 즉 응용 패턴, 다공 패턴, 레이어드 패턴, 캐스트 패턴, 타일 패턴 이다. 본 논문은 5가지 패턴 유형의 예비 조사 후 50명을 대상으로 10쌍의 형용사 어휘를 가지고 Likert 7단계의 SD척도로 감성 어휘 조사 하였다. 본 논문은 예비조사에서 감성 어휘의 감성 치수가 가장 높은 응용 패턴의 디자인 특성을 분석하고 있다. 응용 패턴은 '연속적인'과 감성 상관성이 높다. 이 '연속적인'과의 상관관계가 높은 감성 어휘는 '비연속적인' 과 '규칙적인' 으로 도출 되었다. 본 논문에서 최종 도출한 응용패턴의 감성 디자인 특성은 '연속적인-비연속적인' 과 '불규칙적인-규칙적인' 등의 감성 어휘 쌍과 상대적으로 높은 상관관계를 갖는 것으로 요약될 수 있다. 디지털 기술의 지원에 의해 디자인된 파사드의 디자인 특성을 분석했다는 점과 도출된 디자인 특성의 활용 방향을 논의하고 있다는 점이 본 논문이 갖는 가치이다.

AZ91-0.3Ca-0.2Y 마그네슘 합금 주조재의 시효경화 거동 및 기계적 특성 (Age-hardening Behavior and Mechanical Properties of Cast AZ91-0.3Ca-0.2Y Alloy)

  • 김현지;배준호;김영민;박성혁
    • 소성∙가공
    • /
    • 제32권4호
    • /
    • pp.173-179
    • /
    • 2023
  • In this study, the age-hardening behavior and tensile properties of a cast AZ91-0.3Ca-0.2Y (SEN9) alloy are investigated and compared with those of a commercial AZ91 alloy. Even after homogenization heat treatment, the SEN9 alloy contains numerous undissolved secondary phases, Al8Mn4Y, Al2Y, and Al2Ca, which results in a higher hardness value than the homogenized AZ91 alloy. Under aging condition at 200 ℃, both the AZ91 and SEN9 alloys exhibit the same peak-aging time of 8 h, but the peak hardness of the latter (86.8 Hv) is higher than that of the former (83.9 Hv). The precipitation behavior of Mg17Al12 phase during aging significantly differs in the two alloys. In the AZ91 alloy, the area fraction of Mg17Al12 discontinuous precipitates (DPs) increases up to ~50% as the aging time increases. In contrast, in the SEN9 alloy, the formation and growth of DPs during aging are substantially suppressed by the Ca- or Y-containing particles, which leads to the formation of only a small amount of DPs with an area fraction of ~4% after peak aging. Moreover, the size and interparticle spacing of Mg17Al12 precipitates of the peak-aged SEN9 alloy are smaller than those of the peak-aged AZ91 alloy. The homogenized AZ91 alloy exhibits a higher tensile strength than the homogenized SEN9 alloy due to the finer grains of the former. However, the peak-aged SEN9 alloy has a higher tensile elongation than the peak-aged AZ91 alloy due to the smaller amount of brittle DPs in the former.

2차원 불연속체 해석에 의한 양호한 암반 내의 지하공동 형상비가 안정성에 미치는 영향 검토 (The effect of the shape factor of an underground cavern in good rock conditions on its stability by 2D discontinuum analysis)

  • 유광호;정지성
    • 한국터널지하공간학회 논문집
    • /
    • 제11권2호
    • /
    • pp.189-198
    • /
    • 2009
  • 현재 국내 외에서는 유류 지하 비축 공동, 식품 저장 공동 등과 같은 지하구조물 건설에 대한 관심이 증가하고 있다. 이러한 지하공동의 안정성을 평가할 때 형상비나 굴착면적을 비롯하여 지하공동이 굴착될 암반의 절리 발달 상태는 매우 중요하다. 따라서 본 연구는 형상비가 지하공동의 안정성에 미치는 영향을 안전율 중심으로 분석하였다 이를 위해 양호한 암반 내에 시공되는 공동의 네 가지의 형상비를 가정하고, 토피고, 측압계수, 절리의 간격, 강도 및 방향을 달리하여 민감도 분석을 실시하였다. 공동의 안정성은 강도감소기법을 이용하여 수치해석에 의해 얻은 안전율을 사용하여 평가되었다. 본 논문은 향후 불연속면을 포함한 암반에 시공되는 지하공동 설계 및 안정성 평가에 도웅이 될 수 있을 것으로 기대된다.

Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions

  • Chen, Li'ang;Pei, Weiwei;Yang, Yihong;Guo, Wanli
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.237-248
    • /
    • 2022
  • Nowadays, more and more subway tunnels were planed and constructed underneath the ground of urban cities to relieve the congested traffic. Potential damage may occur in existing tunnel if the new tunnel is constructed too close. So far, previous studies mainly focused on the tunnel-tunnel interactions with circular shape. The difference between circular and horseshoe shaped tunnel in terms of deformation mechanism is not fully investigated. In this study, three-dimensional numerical parametric studies were carried out to explore the effect of different tunnel shapes on the complicated tunnel-tunnel interaction problem. Parameters considered include volume loss, tunnel stiffness and relative density. It is found that the value of volume loss play the most important role in the multi-tunnel interactions. For a typical condition in this study, the maximum invert settlement and gradient along longitudinal direction of horseshoe shaped tunnel was 50% and 96% larger than those in circular case, respectively. This is because of the larger vertical soil displacement underneath existing tunnel. Due to the discontinuous hoop axial stress in horseshoe shaped tunnel, significant shear stress was mobilized around the axillary angles. This resulted in substantial bending moment at the bottom plate and side walls of horseshoe shaped tunnel. Consequently, vertical elongation and horizontal compression in circular existing tunnel were 45% and 33% smaller than those in horseshoe case (at monitored section X/D = 0), which in latter case was mainly attributed to the bending induced deflection. The radial deformation stiffness of circular tunnel is more sensitive to the Young's modulus compared with horseshoe shaped tunnel. This is because of that circular tunnel resisted the radial deformation mainly by its hoop axial stress while horseshoe shaped tunnel do so mainly by its flexural rigidity. In addition, the reduction of soil stiffness beneath the circular tunnel was larger than that in horseshoe shaped tunnel at each level of relative density, indicating that large portion of tunneling effect were undertaken by the ground itself in circular tunnel case.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.