Journal of the Korean Data and Information Science Society
/
v.18
no.3
/
pp.669-678
/
2007
An algorithm to detect the number of discontinuity points of the variance function in regression model is proposed. The proposed algorithm is based on the left and right one-sided kernel estimators of the second moment function and test statistics of the existence of a discontinuity point coming from the asymptotic distribution of the estimated jump size. The finite sample performance is illustrated by simulated example.
Journal of the Korean Data and Information Science Society
/
v.21
no.1
/
pp.51-59
/
2010
In the case that the regression function has a discontinuity point in generalized linear model, Huh (2009) estimated the location and jump size using the log-likelihood weighted the one-sided kernel function. In this paper, we consider estimation of the unknown number of the discontinuity points in the regression function. The proposed algorithm is based on testing of the existence of a discontinuity point coming from the asymptotic distribution of the estimated jump size described in Huh (2009). The finite sample performance is illustrated by simulated example.
Communications for Statistical Applications and Methods
/
v.15
no.5
/
pp.709-717
/
2008
The difference of two one-sided kernel estimators is usually used to detect the location of the discontinuity points of regression function. The large absolute value of the statistic imply discontinuity of regression function, so we may use the difference of two one-sided kernel estimators as the test statistic for testing null hypothesis of a smooth regression function. The problem is, however, we only know the asymptotic distribution of the test statistic under $H_0$ and we hardly expect the good performance of test if we rely solely on the asymptotic distribution for determining the critical points. In this paper, we show that if we adjust the bias of test statistic properly, the asymptotic rules hold for even small sample size situation.
This study presents an automatic matching method for generating a dense, accurate, and discontinuity-preserved digital surface model (DSM) using multiple images acquired by an aerial digital frame camera. The proposed method consists of two main procedures: area-based multi-image matching (AMIM) and stereo-pair epipolar line matching (SELM). AMIM evaluates the sum of the normalized cross correlation of corresponding image points from multiple images to determine the optimal height of an object point. A novel method is introduced for determining the search height range and incremental height, which are necessary for the vertical line locus used in the AMIM. This procedure also includes the means to select the best reference and target images for each strip so that multi-image matching can resolve the common problem over occlusion areas. The SELM extracts densely positioned distinct points along epipolar lines from the multiple images and generates a discontinuity-preserved DSM using geometric and radiometric constraints. The matched points derived by the AMIM are used as anchor points between overlapped images to find conjugate distinct points using epipolar geometry. The performance of the proposed method was evaluated for several different test areas, including urban areas.
The Fourier series has a rapid oscillation near end points at jump discontinuity which is called the Gibbs phenomenon. There is an overshoot (or undershoot) of approximately 9% at jump discontinuity. In this paper, we prove that a bunch of series representations (certain nonharmonic Fourier series) give good approximations vanishing Gibbs phenomenon. Also we have an application for approximating some shape of upper part of a vehicle in a different way from the method of cubic splines and wavelets.
Let $T_l$ be a transformation on the interval [-1, 1] defined by Chebyshev polynomial of degree $l(l{\geq}2)$, i.e., $T_l(cos{\theta})=cos(l{\theta})$. In this paper, we consider $T_l$ as a measure preserving transformation on [-1, 1] with an invariant measure $\frac{1}{\sqrt[\pi]{1-x^2}}dx$. We show that If f(x) is a nonconstant step function with finite k-discontinuity points with k < l-1, then it satisfies the Central Limit Theorem. We also give an explicit method how to check whether it satisfies the Central Limit Theorem or not in the cases of general step functions with finite discontinuity points.
Mojtaba Taghizadeh;Reza Khalou Kakaee;Hossein Mirzaee Nasirabad;Farhan A. Alenizi
Geomechanics and Engineering
/
v.36
no.3
/
pp.205-215
/
2024
Manually mapping fractures in construction stone mines is challenging, time-consuming, and hazardous. In this method, there is no physical access to all points. In contrast, digital image processing offers a safe, cost-effective, and fast alternative, with the capability to map all joints. In this study, two methods of detecting the trace of discontinuities using image processing in construction stone mines are presented. To achieve this, we employ two modified Hough transform algorithms and the degree of neighborhood technique. Initially, we introduced a method for selecting the best edge detector and smoothing algorithms. Subsequently, the Canny detector and median smoother were identified as the most efficient tools. To trace discontinuities using the mentioned methods, common preprocessing steps were initially applied to the image. Following this, each of the two algorithms followed a distinct approach. The Hough transform algorithm was first applied to the image, and the traces were represented through line drawings. Subsequently, the Hough transform results were refined using fuzzy clustering and reduced clustering algorithms, along with a novel algorithm known as the farthest points' algorithm. Additionally, we developed another algorithm, the degree of neighborhood, tailored for detecting discontinuity traces in construction stones. After completing the common preprocessing steps, the thinning operation was performed on the target image, and the degree of neighborhood for lineament pixels was determined. Subsequently, short lines were removed, and the discontinuities were determined based on the degree of neighborhood. In the final step, we connected lines that were previously separated using the method to be described. The comparison of results demonstrates that image processing is a suitable tool for identifying rock mass discontinuity traces. Finally, a comparison of two images from different construction stone mines presented at the end of this study reveals that in images with fewer traces of discontinuities and a softer texture, both algorithms effectively detect the discontinuity traces.
This paper presents optimal recursive digital filter design to meet simultaneous specifications of magnitude and linear phase characteristics. As is well known, the overshoot in the vicinity of discontinuity is hight. The technique using linear programming (the dual programming) is choosing more specification points in the vicinity of band limit frequency. The resulting filter can shown improved response and numerical accuracy with reduced nonuniform specification points in frequency domain.
Communications for Statistical Applications and Methods
/
v.15
no.6
/
pp.899-908
/
2008
If the regression function has jump points, nonparametric estimation method based on local smoothing is not statistically consistent. Therefore, when we estimate regression function, it is quite important to know whether it is reasonable to assume that regression function is continuous. If the regression function appears to have jump points, then we should estimate first the location of jump points. In this paper, we propose a procedure which can do both the testing hypothesis of discontinuity of regression function and the estimation of the number and the location of jump points simultaneously. The performance of the proposed method is evaluated through a simulation study. We also apply the procedure to real data sets as examples.
Field investigations of the orientations of discontinuity planes inside the borehole for designing the underground rock structures have been depend solely on the borehole image-taking techniques. But, borehole image-taking has to be processed after the completion of drilling operation and also requires the handling of highly expensive apparatus so that practical application is very restricted. In this study Discontinuity Orientation Measurement (DOM) drilling system and discontinuity analysis model RoSA-DOM are developed to acquire the reliable information of rock structure by analyzing the characteristics of joint distribution. DOM drilling system retrieves the rock core on which the reference line of pre-fixed drilling orientation is engraved. Coordinates of three arbitrary points on the joint surface relative to the position of reference line are assessed to determine the orientation of joint plane. The position of joint plane is also allocated by calculating the location of core axis at which joint plane is intersected. Then, the formation of joint set is analyzed by utilizing the clustering algorithm. Total and set spacings are calculated by considering the borehole axis as the scanline. Engineering applicability of in-situ rock mass around the borehole is also estimated by calculating the total and regional RQDs along the borehole axis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.