• Title/Summary/Keyword: discontinuity detection

Search Result 41, Processing Time 0.024 seconds

Wavelet Generation and It's Application in Gravity Potential (중력 포텐셜에서의 웨이브렛 생성과 응용)

  • Kim, Sam-Tai;Jin, Hong-Sung;Rim, Hyoung-Rae
    • Journal of the Korean earth science society
    • /
    • v.25 no.2
    • /
    • pp.109-114
    • /
    • 2004
  • A wavelet method is applied to the analysis of gravity potential. One scaling function is proposed to generate wavelet. The scaling function is shown to be replaced to the Green’s function in gravity potential. The upward continuation can be expressed as a wavelet transform i.e. convolution with the scaling function. The scaling factor indicates the height variation. The multiscale edge detection is carried by connecting the local maxima of the wavelet transform at scales. The multiscale edge represents discontinuity of the geological structure. The multiscale edge method is applied to gravity data from Masan and Changwon.

Boundary-preserving Stereo Matching based on Confidence Region Detection and Disparity Map Refinement (신뢰 영역 검출 및 시차 지도 재생성 기반 경계 보존 스테레오 매칭)

  • Yun, In Yong;Kim, Joong Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.132-140
    • /
    • 2016
  • In this paper, we propose boundary-preserving stereo matching method based on adaptive disparity adjustment using confidence region detection. To find the initial disparity map, we compute data cost using the color space (CIE Lab) combined with the gradient space and apply double cost aggregation. We perform left/right consistency checking to sort out the mismatched region. This consistency check typically fails for occluded and mismatched pixels. We mark a pixel in the left disparity map as "inconsistent", if the disparity value of its counterpart pixel differs by a value larger than one pixel. In order to distinguish errors caused by the disparity discontinuity, we first detect the confidence map using the Mean-shift segmentation in the initial disparity map. Using this confidence map, we then adjust the disparity map to reduce the errors in initial disparity map. Experimental results demonstrate that the proposed method produces higher quality disparity maps by successfully preserving disparity discontinuities compared to existing methods.

A Comparison of Accuracy between MRI and Arthroscopic Finding in the Diagnosis of Acute ACL Tear (급성 전방십자인대 손상의 진단에 있어 관절경 소견과의 비교분석을 통한 자기공명영상의 유용성)

  • Choi, Chong-Hyuk;Yoon, Han-Kook;Kim, Bo-Ram;Yoon, Choon-Sik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.9 no.1
    • /
    • pp.46-50
    • /
    • 2005
  • Purpose: The purpose of this study is to evaluate the accuracy of magnetic resonance imaging (MRI) in the diagnosis of acute anterior cruciate ligament (ACL) injury and its tear pattern in comparison with arthroscopic finding. Materials and Methods: Sixty consecutive patients with acute ACL injury were taken NRI followed by arthroscopic examination between January 2002 and June 2004. MRI findings were reviewed according to the presence of ACL discontinuity, diffuse swelling or thickening, focal edema, collapse on distal end, and any combined tear. The pathologic findings were then confirmed arthroscopically. The diagnostic accuracy of MRI on ACL tear pattern was analyzed by obtaining its positive predictive value. Results: All fifty two cases with presence of discontinuity on MRI showed ACL rupture arthroscopically. The location of ACL tear, diffuse swelling and focal edema on MRI also corresponded with arthroscopic findings respectively. However, the diagnostic accuracy of MRI was relatively lower in the presence of other ACL patterns such as collapses and combined tear. Conclusion: Preoperative MRI findings seem to be in accordance with arthroscopic findings and is significantly accurate in detection of location and diffuse swelling and focal edema of ACL tear.

  • PDF

Difference Edge Acquisition for B-spline Active Contour-Based Face Detection (B-스플라인 능동적 윤곽 기반 얼굴 검출을 위한 차 에지 영상 획득)

  • Kim, Ga-Hyun;Jung, Ho-Gi;Suhr, Jae-Kyu;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.19-27
    • /
    • 2010
  • This paper proposes a method for enhancing detection performance and reducing computational cost when detecting a human face by applying B-spline active contour to the frame difference of consecutive images. Firstly, the method estimates amount of user's motion using kurtosis. If the kurtosis is smaller than a pre-defined threshold, it is considered that the amount of user's motion is insufficient and thus the contour fitting is not applied. Otherwise, the contour fitting is applied by exploiting the fact that the amount of motion is sufficient. Secondly, for the contour fitting, difference edges are detected by combining the distance transformation of the binarized frame difference and the edges of current frame. Lastly, the face is located by assigning the contour fitting process to the detected difference edges. Kurtosis-based motion amount estimation can reduce a computational cost and stabilize the results of the contour fitting. In addition, distance transformation-based difference edge detection can enhance the problems of contour lag and discontinuous difference edges. Experimental results confirm that the proposed method can reduce the face localization error caused by the contour lag and discontinuity of edges, and decrease the computational cost by omitting approximately 39% of the contour fitting.

Detection of Yellow Sand Dust over Northeast Asia using Background Brightness Temperature Difference of Infrared Channels from MODIS (MODIS 적외채널 배경 밝기온도차를 이용한 동북아시아 황사 탐지)

  • Park, Jusun;Kim, Jae Hwan;Hong, Sung Jae
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • The technique of Brightness Temperature Difference (BTD) between 11 and $12{\mu}m$ separates yellow sand dust from clouds according to the difference in absorptive characteristics between the channels. However, this method causes consistent false alarms in many cases, especially over the desert. In order to reduce these false alarms, we should eliminate the background noise originated from surface. We adopted the Background BTD (BBTD), which stands for surface characteristics on clear sky condition without any dust or cloud. We took an average of brightness temperatures of 11 and $12{\mu}m$ channels during the previous 15 days from a target date and then calculated BTD of averaged ones to obtain decontaminated pixels from dust. After defining the BBTD, we subtracted this index from BTD for the Yellow Sand Index (YSI). In the previous study, this method was already verified using the geostationary satellite, MTSAT. In this study, we applied this to the polar orbiting satellite, MODIS, to detect yellow sand dust over Northeast Asia. Products of yellow sand dust from OMI and MTSAT were used to verify MODIS YSI. The coefficient of determination between MODIS YSI and MTSAT YSI was 0.61, and MODIS YSI and OMI AI was also 0.61. As a result of comparing two products, significantly enhanced signals of dust aerosols were detected by removing the false alarms over the desert. Furthermore, the discontinuity between land and ocean on BTD was removed. This was even effective on the case of fall. This study illustrates that the proposed algorithm can provide the reliable distribution of dust aerosols over the desert even at night.

Development of Selection Model of Interchange Influence Area in Seoul Belt Expressway Using Chi-square Automatic Interaction Detection (CHAID) (CHAID분석을 이용한 나들목 주변 지가의 공간분포 영향모형 개발 - 서울외곽순환고속도로를 중심으로 -)

  • Kim, Tae Ho;Park, Je Jin;Kim, Young Il;Rho, Jeong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.711-717
    • /
    • 2009
  • This study develops model for analysis of relationship between major node (Interchange in expressway) and land price formation of apartments along with Seoul Belt Expressway by using CHAID analysis. The results show that first, regions(outer side: Gyeongido, inner side: Seoul) on the line of Seoul Belt Expressway are different and a graph generally show llinear relationships between land price and traffic node but it does not; second, CHAID analysis shows two different spatial distribution at the point of 2.6km in the outer side, but three different spatial distribution at the point of 1.4km and 3.8km in the inner side. In other words, traffic access does not necessarily guarantee high housing price since the graphs shows land price related to composite spatial distribution. This implies that residential environments (highway noise and regional discontinuity) and traffic accessibility cause mutual interaction to generate this phenomenon. Therefore, the highway IC landprice model will be beneficial for calculation of land price in New Town which constantly is being built along the highway.

Study on Density Discontinuous Layers of the Kunsan Basin in the Yellow Sea Using Satellite Altimetry Gravity Data (인공위성 해면고도계 중력자료를 이용한 황해 군산분지의 밀도 불연속면에 대한 연구)

  • Kim, Kyong-O;Oh, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.751-759
    • /
    • 2007
  • To better understand the subsurface geological structure of the Kunsan Basin in the Yellow Sea, the mean depths of the density discontinuous layers (DDLs) of the Kunsan Basin were calculated by power spectrum analysis using satellite altimetry gravity data. The calculated mean depths of DDLs were -1.1km, -3.4km, -9.1km and -31.0km. The mean depth of -1.1km DDL was interpreted as regional unconformity shown in about 1 second in two way travel time (TWTT) in the seismic reflection profiles, and the mean depth of -3.4km DDL was also interpreted as top of the acoustic basement in the seismic reflection profiles. Comparing with well data, seismic reflection profiles and regional geology in the study area, the mean depth of -9.1km DDL was interpreted as top of the igneous origin basement. This means that the acoustic basement of the study area is composed mainly of sediments which are disregarded in previous study. The mean depth of -31.0km DDL was interpreted as the Moho discontinuity because this mean depth is similar to one of the normal continental crust thickness. The detection of top of the igneous origin basement suggests that oil gas potential analysis in Kunsan Basin needs to be extended to the deeper part of sediments (acoustic basement).

A Method for Improving Vein Recognition Performance by Illumination Normalization (조명 정규화를 통한 정맥인식 성능 향상 기법)

  • Lee, Eui Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.423-430
    • /
    • 2013
  • Recently, the personal identification technologies using vein pattern of back of the hand, palm, and finger have been developed actively because it has the advantage that the vein blood vessel in the body is impossible to damage, make a replication and forge. However, it is difficult to extract clearly the vein region from captured vein images through common image prcessing based region segmentation method, because of the light scattering and non-uniform internal tissue by skin layer and inside layer skeleton, etc. Especially, it takes a long time for processing time and makes a discontinuity of blood vessel just in a image because it has non-uniform illumination due to use a locally different adaptive threshold for the binarization of acquired finger-vein image. To solve this problem, we propose illumination normalization based fast method for extracting the finger-vein region. The proposed method has advantages compared to the previous methods as follows. Firstly, for remove a non-uniform illumination of the captured vein image, we obtain a illumination component of the captured vein image by using a low-pass filter. Secondly, by extracting the finger-vein path using one time binarization of a single threshold selection, we were able to reduce the processing time. Through experimental results, we confirmed that the accuracy of extracting the finger-vein region was increased and the processing time was shortened than prior methods.

Wavelet-based Pitch Detector for 2.4 kbps Harmonic-CELP Coder (2.4 kbps 하모닉-CELP 코더를 위한 웨이블렛 피치 검출기)

  • 방상운;이인성;권오주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.717-726
    • /
    • 2003
  • This paper presents the methods that design the Wavelet-based pitch detector for 2,4 kbps Harmonic-CELP Coder, and that achieve the effective waveform interpolation by decision window shape of the transition region, Waveform interpolation coder operates by encoding one pitch-period-sized segment, a prototype segment, of speech for each frame, generate the smooth waveform interpolation between the prototype segments for voiced frame, But, harmonic synthesis of the prototype waveforms between previous frame and current frame occur not only waveform errors but also discontinuity at frame boundary on that case of pitch halving or doubling, In addtion, in transition region since waveform interpolation coder synthesizes the excitation waveform by using overlap-add with triangularity window, therefore, Harmonic-CELP fail to model the instantaneous increasing speech and synthesis waveform linearly increases, First of all, in order to detect the precise pitch period, we use the hybrid 1st pitch detector, and increse the precision by using 2nd ACF-pitch detector, Next, in order to modify excitation window, we detect the onset, offset of frame by GCI, As the result, pitch doubling is removed and pitch error rate is decreased 5.4% in comparison with ACF, and is decreased 2,66% in comparison with wavelet detector, MOS test improve 0.13 at transition region.

A Quality-control Experiment Involving an Optical Televiewer Using a Fractured Borehole Model (균열모형시추공을 이용한 광학영상화검층 품질관리 시험)

  • Jeong, Seungho;Shin, Jehyun;Hwang, Seho;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.17-30
    • /
    • 2020
  • An optical televiewer is a geophysical logging device that produces continuous high-resolution full-azimuth images of a borehole wall using a light-emitting-diode and a complementary metal-oxide semiconductor image sensor to provide valuable information on subsurface discontinuities. Recently, borehole imaging logging has been applied in many fields, including ground subsidence monitoring, rock mass integrity evaluation, stress-induced fracture detection, and glacial annual-layer measurements in polar regions. Widely used commercial borehole imaging logging systems typically have limitations depending on equipment specifications, meaning that it is necessary to clearly verify the scope of applications while maintaining appropriate quality control for various borehole conditions. However, it is difficult to directly check the accuracy, implementation, and reliability for outcomes, as images derived from an optical televiewer constitute in situ data. In this study, we designed and constructed a modular fractured borehole model having similar conditions to a borehole environment to report unprecedented results regarding reliable data acquisition and processing. We investigate sonde magnetometer accuracy, color realization, and fracture resolution, and suggest data processing methods to obtain accurate aperture measurements. The experiment involving the fractured borehole model should enhance not only measurement quality but also interpretations of high-resolution and reliable optical imaging logs.