• Title/Summary/Keyword: discharge-SS relation

Search Result 5, Processing Time 0.02 seconds

Uncertainty of Discharge-SS Relationship Used for Turbid Flow Modeling (탁수모델링에 사용하는 유량-SS 관계의 불확실성)

  • Chung, Se-Woong;Lee, Jung-Hyun;Lee, Heung-Soo;Maeng, Seung-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.991-1000
    • /
    • 2011
  • The relationship between discharge (Q) and suspended sediment (SS) concentration often is used for the estimation of inflow SS concentration in reservoir turbidity modeling in the absence of actual measurements. The power function, SS=aQb, is the most commonly used empirical relation to determine the SS load assuming the SS flux is controlled by variations of discharge. However, Q-SS relation typically is site specific and can vary depending on the season of the year. In addition, the relation sometimes shows hysteresis during rising limb and falling limb for an event hydrograph. The objective of this study was to examine the hysteresis of Q-SS relationships through continuous field measurements during flood events at inflow rivers of Yongdam Reservoir and Soyang Reservoir, and to analyze its effect on the bias of SS load estimation. The results confirmed that Q-SS relations display a high degree of scatter and clock-wise hysteresis during flood events, and higher SS concentrations were observed during rising limb than falling limb at the same discharge. The hysteresis caused significant bias and underestimation of SS loading to the reservoirs when the power function is used, which is important consideration in turbidity modeling for the reservoirs. As an alternative of Q-SS relation, turbidity-SS relation is suggested. The turbidity-SS relations showed less variations and dramatically reduced the bias with observed SS loading. Therefore, a real-time monitoring of inflow turbidity is necessary to better estimate of SS influx to the reservoirs and enhance the reliability of reservoir turbidity modeling.

A Stochastic Analysis of the Water Quality on the Basin of Soyang River with Discharge Variation (유량변동에 따른 소양강유역 수질의 통계학적 해석)

  • Choi, Han-Kyu;Baek, Kyung-Won;Choi, Yong-Mook;Choi, Jin-Woo
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.233-240
    • /
    • 2001
  • This research was conducted with the aim of efficiently managing large scale of rivers such like Songyang-river through predicting water quality change with analyzing the characteristics of the flowing in nutrients and pollutants. The main result will be used as basic data for effectively operating reservoirs through controling water quality and quantity. The relationship between quantity of flow and water quality was analyzed and pollution loading into the basin was estimated. Three areas of Soyang-river upstream and one area of Suip-cheon in Yanggu-gun were selected as research sites. Flow and water quality were measured simultaneously. The relation between quantity of discharge and pollution concentration and between quantity of discharge and pollution loading were analyzed by statistical method, respectively. We provided a rating curve through measuring quantity of discharge(collecting quantity of discharge) and pollutograph and pollution loading curve through water quality data. Also, we analyzed the correlation between quantity of discharge per unit area and pollution loading per unit area in each basin. As resurt of this research, Buk-cheon spot revealed an excellent first grade water quality for the items including $BOD_5$, DO, and SS. The correlation coefficient between Buk-cheon spot's quantity of discharge and pollution loading was 0.896~0.996, showing the validity of analysis applying correlation curve formula of quantity of discharge and pollution loading in the same spot. Also, pollution loading per unit area of the items including $BOD_5$, COD, DO, SS, T-N, T-P increased as the area of basins get increased following the sequence of Buk-cheon, Suip-cheon, Naelin-cheon spots.

  • PDF

A Development of Washoff Model for Suspended Solids in Urban Areas (도시유역의 부유고형물 유출평가를 위한 쓸림모형 개발)

  • Joo, Jingul;Jung, Donghwi;Kim, Joonghoon;Park, Moojong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.789-795
    • /
    • 2010
  • Suspended Solid (SS) is one of the main pollutants and discharges with attached other pollutants such as heavy metal and toxic substance. It is very important to estimate and forecast the release characteristics of SS for water quality improvement. The current studies assumed that SS release rate is proportional to the rain intensity and suggested exponential washoff models. These models related to the shear force of flow. In this study, a new washoff model is suggested based on relation with SS release rate and mean flow rate of the basin surface which is closely related to the shear force. The proposed model is applied to the Goonja drainage district in Seoul, Korea. The new washoff model simulates the SS discharge more accurately in the various rainfall types. The model can be widely applied to the real problems such as the management of non-point source pollutant and the design of treatment facilities.

Relation between Serum S100β and Severity and Prognosis in Traumatic Brain Injury (외상성 뇌손상 환자에 있어서 S100β의 혈중 농도와 뇌손상의 정도 및 예후의 관계)

  • Kim, Oh Hyun;Lee, Kang Hyun;Yoon, Kap Jun;Park, Kyung Hye;Jang, Yong Su;Kim, Hyun;Hwang, Sung Oh
    • Journal of Trauma and Injury
    • /
    • v.20 no.2
    • /
    • pp.138-143
    • /
    • 2007
  • Purpose: $S100{\beta}$, a marker of traumatic brain injury (TBI), has been increasingly focused upon during recent years. $S100{\beta}$, is easily measured not only in cerebrospinal fluid (CSF) but also in serum. After TBI, serum S 10019, has been found to be increased at an early stage. The purpose of this study was to evaluate the clinical correlations between serum $S100{\beta}$, and neurologic outcome, and severity in traumatic brain injury. Methods: From August 2006 to October 2006, we made a protocol and studied prospectively 42 patients who visited the emergency room with TBI. Venous blood samples for $S100{\beta}$, protein were taken within six hours after TBI and vital signs, as well as the Glasgow Coma Scale (GCS), were recorded. The final diagnosis and the severity were evaluated using the Abbreviated Injury Score (AIS), and the prognosis of the patients was evaluated using the Glasgow Outcome Score (GOS). Results: Thirty-eight patients showed a favorable prognosis (discharge, recovery, transfer), and four showed an unfavorable prognosis. Serum $S100{\beta}$, was higher in patients with an unfavorable prognosis than in patients with a favorable prognosis, and a significant difference existed between the two groups ($0.74{\pm}1.50\;{\mu}g/L$ vs $7.62{\pm}6.53\;{\mu}g/L$ P=0.002). A negative correlation existed between serum $S100{\beta}$, and the Revised Traumatic Score (R2=-0.34, P=0.03), and a positive correlation existed between serum $S100{\beta}$, and the Injury Severity Score (R2=0.33, P=0.03). Furthermore, the correlation between serum $S100{\beta}$, and the initial GCS and the GCS 24 hours after admission to the ER were negative (R2=-0.62, P<0.001; R2=-0.47, P=0.005). Regarding the GOS, the mean serum concentration of $S100{\beta}$, was $7.62\;{\ss}{\partial}/L$ (SD=${\pm}6.53$) in the expired patients, $1.15\;{\mu}g/L$ in the mildly disable patient, and $0.727\;{\mu}g/L$ (SD=${\pm}0.73$) in the recovered patients. These differences are statistically significant (p<0.001). Conclusion: In traumatic brain injury, a higher level of serum concentration of $S100{\beta}$, has a poor prognosis for neurologic outcome.

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF