• Title/Summary/Keyword: discharge measurement method

Search Result 363, Processing Time 0.025 seconds

Development of a Stream Discharge Estimation Program (자연하천 유량산정 프로그램 개발)

  • Lee Sang Jin;Hwang Man Ha;Lee Bae Sung;Ko Ick Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.27-38
    • /
    • 2006
  • In this study, we developed a program to estimate discharge efficiently considering major hydraulic characteristic including water level, river bed, water slope and roughness coefficient in a natural river. Stream discharge was measured at Gongju gauge station located in the down stream of the Daechung Dam during normal and dry seasons from 2003 to 2004. The developed model was compared with the results from the existing rating curve at T/M gage stations, and was used for runoff analyses. Evaluating the developed river discharge estimation program, it was applied during 1983-2004 that base flow separation method and RRFS (Rainfall Runoff Forecasting System) which is based on SSARR (Streamflow Synthesis And Resevoir Regulation). The result presents the stage-discharge curve creator range at the Gong-ju is overestimated by approximately $10-20\%$, especially at the low stage. It is attributed to the hydraulic characteristics at the study. The discharge simulated by the RRFS and base flow separation, which is calibrated using the measurement at the early spring and late fall season during relatively d]v season, shows the least errors. The coefficient of roughness at Gongju station varied with the high and low water level.

Accuracy Analysis of ADCP Stationary Discharge Measurement for Unmeasured Regions (ADCP 정지법 측정 시 미계측 영역의 유량 산정 정확도 분석)

  • Kim, Jongmin;Kim, Seojun;Son, Geunsoo;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.553-566
    • /
    • 2015
  • Acoustic Doppler Current Profilers(ADCPs) have capability to concurrently capitalize three-dimensional velocity vector and bathymetry with highly efficient and rapid manner, and thereby enabling ADCPs to document the hydrodynamic and morphologic data in very high spatial and temporal resolution better than other contemporary instruments. However, ADCPs are also limited in terms of the inevitable unmeasured regions near bottom, surface, and edges of a given cross-section. The velocity in those unmeasured regions are usually extrapolated or assumed for calculating flow discharge, which definitely affects the accuracy in the discharge assessment. This study aimed at scrutinizing a conventional extrapolation method(i.e., the 1/6 power law) for estimating the unmeasured regions to figure out the accuracy in ADCP discharge measurements. For the comparative analysis, we collected spatially dense velocity data using ADV as well as stationary ADCP in a real-scale straight river channel, and applied the 1/6 power law for testing its applicability in conjunction with the logarithmic law which is another representative velocity law. As results, the logarithmic law fitted better with actual velocity measurement than the 1/6 power law. In particular, the 1/6 power law showed a tendency to underestimate the velocity in the near surface region and overestimate in the near bottom region. This finding indicated that the 1/6 power law could be unsatisfactory to follow actual flow regime, thus that resulted discharge estimates in both unmeasured top and bottom region can give rise to discharge bias. Therefore, the logarithmic law should be considered as an alternative especially for the stationary ADCP discharge measurement. In addition, it was found that ADCP should be operated in at least more than 0.6 m of water depth in the left and right edges for better estimate edge discharges. In the future, similar comparative analysis might be required for the moving boat ADCP discharge measurement method, which has been more widely used in the field.

Molecular Emission Spectrometric Detection of Low Level Sulfur Using Hollow Cathode Glow Discharge

  • Koo, Il-Gyo;Lee, Woong-Moo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.73-78
    • /
    • 2004
  • A highly sensitive detecting method has been developed for determining part per billion of sulfur in $H_2S$/Ar plasma. The method is based on the excitation of Ar/$H_2S\;or\;Ar/H_2S/O_2$ mixture in hollow cathode glow discharge sustained by radiofrequency (RF) or 60 Hz AC power and the spectroscopic measurement of the intensity of emission lines from electronically excited $S_2^*\;or\;SO_2^*$ species, respectively. The RF or AC power needed for the excitation did not exceed 30 W at a gas pressure maintained at several mbar. The emission intensity from the $SO_2^*$ species showed excellent linear response to the sulfur concentration ranging from 5 ppbv, which correspond to S/N = 5, to 500 ppbv. But the intensity from the $S_2^*$ species showed a linear response to the $H_2S$ only at low flow rate under 20 sccm (mL/min) of the sample gas. Separate experiments using $SO_2$ gas as the source of sulfur demonstrated that the presence of $O_2$ in the argon plasma is essential for obtaining prominent $SO_2^*$ emission lines.

A Study on the Observation of IRR Camera in Surface Discharge Image (표면방전 현상의 적외선 카메라 관측에 관한 연구)

  • Lim, Jang-Seob;Kim, Jin-Gook;Kim, Hyun-Jong;Lee, Woo-Sun;Lee, Jin;Kim, Duck-Keun;Lee, Hack-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.563-566
    • /
    • 2003
  • The conventional testing as IEC-60587 is widely used in suface aging measurement of outside insulator those testing can carry out very short time in Lab testing. Also IEC-60587 testing is able to offer the standard judgement of relative degradation level of out side HV machine. Therefore it is very useful method compare to previous conventional tracking testing method and effective Lab testing method, But surface discharges(SD) have very complex characteristics of discharge pattern so it is required estimation research to development of precise analysis method. In recent, the study of IRR Camera is carrying out discover of temperature of power equipment through condition diagnosis and system development of degradation diagnosis.

  • PDF

A Comparative Study on Direct Instrument Methods in Open Channel for Measuring River Water Usage (하천수 사용량 계측을 위한 개수로에서의 직접 계측방법 비교 연구)

  • Baek, Jongseok;Kim, Chiyoung;Lee, Kisung;Kang, Hyunwoong;Song, Jaehyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • Continuous and accurate instrument of river water usage is needed for sustainable river water management. Although the instrument methods applicable to each point of use of river water are different, more precise direct instrument methods are required at the point of major open channel. Users of river water should select appropriate direct instrument methods to measure usage, but there is a lack of standards and verification research. In this study, the H-Q rating curve method, ultrasonic method, and microwave method were applied directly to the test basin in the upper basin of Mangyeong river, and the accuracy of measurement data was evaluated by comparing absolute error between discharge data calculated by instrument method. When comparing the calculated discharge of point units, the ultrasonic method showed the best results of the actual measurement. Through continuous instrument, the sum of the daily and monthly units was compared, and the ultrasonic and microwave methods were shown to be highly accurate. Based on the results of this study, it is hoped that the appropriate direct measurement method can be selected according to the importance of the river water use facility, considering that the ultrasonic method and the microwave method are relatively costly compared to the water level-flow relationship method.

The decision of position of a partial discharge in power transformer by measurement of ultra sonic signal (초음파 신호측정에 의한 변압기내의 부분방전위치측정)

  • 문영재
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.87-90
    • /
    • 1992
  • Detecting acoustic emission (AE) provides an appropriate method to diagonize on-line transformers, since acoustic signal is not influenced by strong electric field. Then AE versus AE signal processing method is investigated. But this processing is difficult that decision of starting point of AE wave with acoustic noise. This problem is sloved by correlation which calculate time interval between two signals eactly. This paper presents a technique locating the eact position of the partial discharge (PD) in a power transformer by the correlation of the AE signals from two ultrasonic sensors. And PD position is displayed on monitor. Laboratory tests confirmed that the proposed method can be used for locating the PD in power transformer.

  • PDF

Fast Measurement using Wave-Cutoff Method

  • Seo, Sang-Hun;Na, Byeong-Geun;Yu, Gwang-Ho;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.30-30
    • /
    • 2011
  • The wave-cutoff tool is a new diagnostic method to measure electron density and electron temperature. Most of the plasma diagnostic tools have the disadvantage that their application to processing plasma where toxic and reactive gases are used gives rise to many problems such as contamination, perturbation, precision of measurement, and so on. We can minimize these problems by using the wave-cutoff method. Here, we will present the results obtained through the development of the wave-cutoff diagnostic method. The frequency spectrum characteristics of the wave-cutoff probe will be obtained experimentally and analyzed through the microwave field simulation by using the CST-MW studio simulator. The plasma parameters are measured with the wave-cutoff method in various discharge conditions and its results will be compared with the results of Langmuir probe. Another disadvantage is that other diagnostic methods spend a long time (~ a few seconds) to measure plasma parameters. In this presentation, a fast measurement method will be also introduced. The wave-cutoff probe system consists of two antennas and a network analyzer. The network analyzer provides the transmission spectrum and the reflection spectrum by frequency sweeping. The plasma parameters such as electron density and electron temperature are obtained through these spectra. The frequency sweeping time, the time resolution of the wave-cutoff method, is about 1 second. A short pulse with a broad band spectrum of a few GHz is used with an oscilloscope to acquire the spectra data in a short time. The data acquisition time can be reduced with this method. Here, the plasma parameter measurement methods, Langmuir probe, pulsed wave-cutoff method and frequency sweeping wave-cutoff method, are compared. The measurement results are well matched. The real time resolution is less than 1 ?sec. The pulsed wave-cutoff technique is found to be very useful in the transient plasmas such as pulsed plasma and tokamak edge plasma.

  • PDF

Detection of Unbalanced Voltage Cells in Series-connected Lithium-ion Batteries Using Single-frequency Electrochemical Impedance Spectroscopy

  • Togasaki, Norihiro;Yokoshima, Tokihiko;Oguma, Yasumasa;Osaka, Tetsuya
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.415-423
    • /
    • 2021
  • For a battery module where single cells are connected in series, the single cells should each have a similar state of charge (SOC) to prevent them from being exposed to an overcharge or over-discharge during charge-discharge cycling. To detect the existence of unbalanced SOC cells in a battery module, we propose a simple measurement method using a single-frequency response of electrochemical impedance spectroscopy (EIS). For a commercially available graphite/nickel-cobalt-aluminum-oxide lithium-ion cell, the cell impedance increases significantly below SOC20%, while the impedance in the medium SOC region (SOC20%-SOC80%) remains low with only minor changes. This impedance behavior is mostly due to the elementary processes of cathode reactions in the cell. Among the impedance values (Z, Z', Z"), the imaginary component of Z" regarding cathode reactions changes heavily as a function of SOC, in particular, when the EIS measurement is performed around 0.1 Hz. Thanks to the significant difference in the time constant of cathode reactions between ≤SOC10% and ≥SOC20%, a single-frequency EIS measurement enlarges the difference in impedance between balanced and unbalanced cells in the module and facilitates an ~80% improvement in the detection signal compared to results with conventional EIS measurements.

Partial Discharge Quality Measurement improvement of XLPE Cable of 154kV by new method of FSA (박 센서 배열에 따른 154kV XLPE 케이블의 부분방전 검출 특성 연구)

  • Shin, Dong-Hoon;Yang, Jong-Seok;Lwin, Kyaw-Soe;Lim, Jong-Cheon;Hwang, Doo-Hyun;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.158-159
    • /
    • 2006
  • The system measuring the Partial discharge(PD) is very essential to investigate the hazard defects in the insulation systems of the high voltage engineering. We included two parts in this discussion; The proposed method of Foil Sensor Array and the normally used method m the practice. Firstly, it will be shown the improved sensitivity of our proposed FSA sensor compare with the existing normal foil sensor. And then, the linearity of detecting sensitivities of various kinds of FSA sensors such as $2{\times}2$, $2{\times}4$, $3{\times}3$ etc. using in our experiments, was shown. From the obtained results, we can see that FSA sensor is more sensitivity than normal foil sensor and the linear increment property of FSA sensitivities.

  • PDF

A Study on the Signal Propagation Characteristics of Generator Windings (발전기 권선에서의 신호전송 특성에 관한 연구)

  • Hwang, Don-Ha;Kim, Jin-Bong;Kim, Yong-Joo;Park, Myong-Soo;Kim, Taek-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1299-1303
    • /
    • 1995
  • The detection and measurement of partial discharge activity prevalent in the solid insulating systems of high-voltage generator stator windings has, for many years, been a recognized method of assessing the insulation condition of such systems. Partial discharge activity occurs at sites of degradation within, or at the surface of, stator's insulation systems under high voltage stressing. However, partial discharge pulses suffer from attenuation and distortion when transmitted along windings, because of the complex L-C network between windings. The mode of transmission varies with the signal frequency and is dependant on the geometrical configurations of windings. This paper reports the investigated results of the signal propagation characteristics along the windings when both sinusoidal signals and simulated partial discharge pulses are injected at the various positions of stator windings within the 25 MVA, 11 kV hydro generator. The on-line identification technique of partial discharge location in generator windings is also proposed in this study.

  • PDF