• Title/Summary/Keyword: discharge flow rate

Search Result 755, Processing Time 0.024 seconds

Study on operation characteristics of the cold air distribution systems with an ice storage tank (빙축열을 이용한 저온공조시스템 운전 특성 연구)

  • 염한길;박병규;고득용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.301-312
    • /
    • 1999
  • Experiments were carried out to evaluate performance of the cold air distribution systems with an ice storage tank in test room. Cold air distribution systems provide primary air for comfort conditioning or process cooling at coil discharge temperatures$4^{\circ}C$ to$11^{\circ}C$. The application of a cold air distribution system allows for the downsizing of air distribution equipment and central plant equipment when ice storage tank is used. The benefit of a cold air distribution system include a decrease in the floor-to-floor height, increase floor space, reduced building capital costs, reduced energy use and demand. The use of cold air distribution can result in the most cost effective system and is currently being implemented world wise as the new standard in air conditioning systems. In this study, the cold air distribution system is compared with the general ice storage system. Under the same cooling load conditions, experimental results show that the supply air volume of cold air distribution system decrease 38%, and decrease 45% flow rate of brine for the general ice storage system.

  • PDF

A Study on Disaster and Recovery of Landslides at Inje Province in Korea (2006년 발생한 강원도 인제군의 산사태 피해 및 복구에 관한 연구)

  • Lee, Cheol-Ju;Park, Eun-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.9-17
    • /
    • 2009
  • The main purpose of this work is to analyse damages caused by debris flows during the heavy rainfall at Inje province in Kangwondo, Korea. A series of site investigations have been performed to survey the characteristics of debris flows occurred during the summer season of 2006. It has been found that major losses and costs are triggered by discharge of soil and rock fragments from landslides. During the rainfall unexpectedly high precipitation rate of 113.5mm/hour and 355mm/day was recorded, which could happen at a 80-500 year period. Comparing the period of the rainfall with the time of the landslides, it has been found that the occurrence of the landslides is directly related to heavy rainfalls. At present, several debris barriers have been built at the valleys and natural slopes have been protected by the seed spray method. It is intended to propose an appropriate solutions of restoration of landslide damages and maintenance based on findings from the current study.

  • PDF

Computer Simulation of an Automotive Air-Conditioning in a Transient Mode

  • Oh, Sang-Han;Won, Sung-Pil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.220-228
    • /
    • 2002
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as a key design variable. Therefore, transient characteristics of each system component are essential to the preliminary design as well as steady-state performance. The objective of this study is to develop a computer simulation model and ostinato theoretically the transient performance of an automotive air-conditioning system. To do that, the mathematical modelling of each component, such as compressor, condenser, receiver/drier, expansion valve, and evaporator, is presented first of all. The basic balance equations about mass and energy are used in modelling. For detailed calculation, condenser and evaporator are divided into many sub-sections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in this analysis, but the quasisteady state ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. Also it is assumed that there are no heat loss and no pressure drop in discharge, liquid, and suction lines. The developed simulation model is validated by comparing with the laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed well with those of test data in this case.

A Study on the Characteristics of the High Concentration Ozone Generator for the Semiconductor Wafer Cleaning with the Ozone Dissolved De-ionized Water (반도체 웨이퍼의 오존 수(水) 세정을 위한 고농도 오존발생장치 특성 연구)

  • 손영수;함상용;문세호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.579-585
    • /
    • 2003
  • Recently the utilization of the ozone dissolved de-ionized water(DI-O3 water) in semiconductor wet cleaning process to replace the conventional RCA methods has been studied. In this paper, we propose the water-electrode type ozone generator which has the ozone gas characteristics of the high concentration and high purity to produce the high concentration DI-O3 water for the silicon wafer surface cleaning process. The ozone generator has the dual dielectric tube structure of silent discharge type and the water is both used to electrode and cooling water. We investigate the performance of the proposed ozone generator which has the design goal of the concentration of 7[wt%] and ozone generation quantity of 6[g/hr] at flow rate of 1[$\ell$/min). The experiment results show that the water electrode type ozone generator has the characteristics of 8.48[wt%] of concentration, 8.08[g/hr] of generation quantity and 76.2[g/kWh] of yield and it's possible to use the proposed ozone generator for the DI-O3 water cleaning process of silicon wafer surface.

Experimental Research on the Power Saving Effect Evaluation of a Variable Displacement Vane Pump for an Automatic Transmission (자동변속기용 가변 용량 베인 펌프의 파워 절감 효과 평가에 대한 실험적 연구)

  • Kim, Chulsoo;Bae, Chulyong;Kim, Chanjung;Kim, Kyusik;Son, Taekwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.1-7
    • /
    • 2014
  • A variable displacement vane pump is possible to improve the fuel economy by varying the pump capacity with a vane mechanism according to the engine operating speed range and reducing its driving torque. In general the experimental evaluation of the vane pump for the transmission has been performed mainly not with the vehicle or dynamometer test rig but with component test rig due to the implementation and safety problems. In this paper, in order to evaluate the performance of the developed vane pump as well as the compatibility with other rotary and hydraulic components of the target transmission, the transmission dynamometer based test rig is implemented where the developed pump is built into it and then the variable pump capacity and effect of power reduction are investigated experimentally.

Improvement of Micro-hole EDM Efficiency using Vibration Flushing (진동기구를 이용한 미세구멍 방전가공의 효율향상)

  • Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.623-628
    • /
    • 2011
  • Micro EDM(Electric Discharge Machining) is one of the most powerful technologies which are capable of fabricating micro-structure without any problems from high cutting force. However, there is a significant defect in the part machining with deep holes or pockets, because debris which are generated by electric discharging may frequently cause a short circuit between an electrode and workpiece material. Vibration flushing can reduce the undesirable phenomena with dynamic flow of EDM fluid in a deep and choked area. In this study, Vibration flushing with solenoid is suggested and the results show that the method can generate a remarkable EDM efficiency with high amplitude at a low frequency in comparison with current vibration flushing methods with high frequency using piezo actuators.

Characterization of Inductively Coupled Ar/CH4 Plasma using the Fluid Simulation (유체 시뮬레이션을 이용한 유도결합 Ar/CH4 플라즈마의 특성 분석)

  • Cha, Ju-Hong;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1376-1382
    • /
    • 2016
  • The discharge characteristics of inductively coupled $Ar/CH_4$ plasma were investigated by fluid simulation. The inductively coupled plasma source driven by 13.56 Mhz was prepared. Properties of $Ar/CH_4$ plasma source are investigated by fluid simulation including Navier-Stokes equations. The schematics diagram of inductively coupled plasma was designed as the two dimensional axial symmetry structure. Sixty six kinds of chemical reactions were used in plasma simulation. And the Lennard Jones parameter and the ion mobility for each ion were used in the calculations. Velocity magnitude, dynamic viscosity and kinetic viscosity were investigated by using the fluid equations. $Ar/CH_4$ plasma simulation results showed that the number of hydrocarbon radical is lowest at the vicinity of gas feeding line due to high flow velocity. When the input power density was supplied as $0.07W/cm^3$, CH radical density qualitatively follows the electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density.

Characteristics of Flank and Tip Seal Leakage in a Scroll Compressor for Air-Conditioners (공기조화기용 스크롤 압축기의 플랭크 및 팁실 누설특성)

  • Youn, Young;Kim, Yong-Chan;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.134-143
    • /
    • 2001
  • This paper presents the characteristics of flank and tip seal leakage in a scroll compressor for air-conditioners with R-22 under actual operating conditions. It is well known that the leakage has significant effect on the performance of the scroll compressor. Experiments were performed by using indirect method for measuring mass flow rate passing through flank and tip seal under actual operating conditions, In addition, an analytical model for tip seal leakage was developed to investigate tangential and radial leakage observed at grooves and contact points of tip seals. For low oil concentration, theoretical results were compared with experimental data to verify the analytical model. As a result, leakages through flank and tip seal parts were evaluated as afunction of pressure ratio, orbiting angle, discharge pressure, tip clearance, and leakage point. It was also found that the tip seal leakage was considerable even though the tip seal provided adequate sealing effect.

  • PDF

Plasma Density Measurement of Linear Atmospheric Pressure DBD Source Using Impedance Variation Method (임피던스 변화를 이용한 선형 대기압 DBD 플라즈마 밀도 측정)

  • Shin, Gi Won;Lee, Hwan Hee;Kwon, Hee Tae;Kim, Woo Jae;Seo, Young Chul;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.16-19
    • /
    • 2018
  • The development speed of semiconductor and display device manufacturing technology is growing faster than the development speed of process equipment. So, there is a growing need for process diagnostic technology that can measure process conditions in real time and directly. In this study, a plasma diagnosis was carried out using impedance variation due to the plasma discharge. Variation of the measurement impedance appears as a voltage change at the reference impedance, and the plasma density is calculated using this. The above experiment was conducted by integrating the plasma diagnosis system and the linear atmospheric pressure DBD plasma source. It was confirmed that plasma density varies depending on various parameters (gas flow rate, $Ar/O_2$ mixture ratio, Input power).

Aerosol Deposition Nozzle Design for Uniform Flow Rate: Divergence Angle and Nozzle Length

  • Kim, Jae Young;Kim, Young Jin;Jeon, Jeong Eun;Jeon, Jun Woo;Choi, Beom Soo;Choi, Jeong Won;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.38-44
    • /
    • 2022
  • Plasma density in semiconductor fabrication equipment becomes higher to achieve the improved the throughput of the process, but the increase of surface corrosion of the ceramic coated chamber wall has been observed by the increased plasma density. Plasma chamber wall coating with aerosol deposition prefer to be firm and uniform to prevent the potential creation of particle inside the chamber from the deformation of the coating materials, and the aerosol discharge nozzle is a good control factor for the deposited coating condition. In this paper, we investigated the design of the nozzle of the aerosol deposition to form a high-quality coating film. Computational fluid dynamics (CFD) study was employed to minimize boundary layer effect and shock wave. The degree of expansion, and design of simulation approach was applied to found out the relationship between the divergence angle and nozzle length as the key parameter for the nozzle design. We found that the trade-off tendency between divergence angle and nozzle length through simulation and quantitative analysis, and present the direction of nozzle design that can improve the uniformity of chamber wall coating.