• Title/Summary/Keyword: discharge flow rate

Search Result 758, Processing Time 0.027 seconds

Scenario Analysis of Flood Travel Time using Hydraulic Model in Downstream of Nakdong River (수리학적 모형을 이용한 낙동강 하류구간에서의 홍수도달시간 시나리오 분석)

  • Choi, Hyungu;Lee, Eulrae
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.3
    • /
    • pp.197-207
    • /
    • 2015
  • Modification of travel time is necessary in all Nakdong river basin because hydrological conditions of Nakdong river basin were changed after major rivers project. Also calculation of flood travel time at between sections of weirs is necessary. In this study, flood travel time was calculated using hydraulic model and the latest topographical data from Changnyeong-Haman weir to Nakdong river estuary bank. Analysis of discharge and stage conditions were carried out. 84 of the scenarios were organized according to flow rate, discharge type, boundary conditions, and tributary conditions. Flood travel time of initial and peak were calculated with discharge and stage conditions, respectively. The results of this study will be available in practical business work such as flood forecast warning and weir operation on algae removal.

A Design Technology of Ceramic Tube for High Efficiency Ozone

  • Cho, Kook-Hee;Kim, Young-Bae;Lee, Dong-Hoon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.3
    • /
    • pp.77-80
    • /
    • 2003
  • An innovative ozonizer has been developed using a high frequency, surface discharge and a high purity Ti-Si-AI ceramic catalyst as a dielectric component. Using a type of thin film, a thin cylindrical compound ceramic catalyst layer was adhered to the outside surface of its inner electrode. An alternating current (AC) exciting voltage with frequencies from 0.6 KHz to 1.0 KHz and peak-to-peak voltages of 4-6 ㎸ was applied between the electrodes to produce a stable high-frequency silent discharge. A substantial reduction of the exciting voltage was also enabled by means of a thin Ti-Si-Al ceramic catalyst tube. As a result, the ozonizer can effortlessly obtain the required ozone concentration (50-60 g/$m^2$ for oxygen) and high ozone efficiency consumption power (180 g/kWh for oxygen) with-out the assistance of any particular methods. For purposes of this experiment, oxygen gas temperature was set at 2$0^{\circ}C$, with an inner reactor pressure of 1.6 atm at 600 Hz and a flow rate of 2 l/min.

A Study on the Potential of Agricultural Water and Environmental Flow Supply according to Regulating Lower Control Storage Rate for the Irrigation Reservoir (농업용 저수지의 하한 관리 저수율 설정에 따른 농업용수 및 환경용수 공급 가능성 고찰)

  • Jeong, Jiyeon;Jeung, Minhyuk;Beom, Jina;Park, Minkyeong;Lee, Jaenam;Yoo, Seung-Hwan;Yoon, Kwang-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.21-33
    • /
    • 2023
  • While the main purpose of irrigation reservoirs is to supply agricultural water, the needs of environmental flow and flood control has been expanded. The agricultural reservoirs have been operated in the form of carry-over system until now. Therefore, the supply of agricultural water is difficult when the storage rate is not sufficiently secured after large volume of irrigation. In addition, there are regulation of the upper storage rate for some large reservoirs during the flood season, but lower storage rate is not regulated. Accordingly, this study aims to evaluate the capacity of agricultural water and environmental flow supply by setting the management lower storage rate of reservoir. The changes in the supply of agricultural and environmental flow was simulated according to the three different regulating lower storage rate scenarios. As a result, it was judged effective in terms of water supply managing the lower storage rate up to 30% when the initial storage rate of farming period is above annual average for the Naju reservoir considering existing water management practice. If the lower storage rate would have been controlled above 30%, the supply of agricultural water might be increased and non-effective discharge amount would be decreased compared to other scenarios during dry period of 2016-2018.

An Experimental Study on Characteristic of Discharge Distribution Rate according Divided Channel Shape (분수로 분류부 형상에 따른 유량분배율 특성의 실험적 연구)

  • Choi, Han-Kyu;Baek, Hyo-Sun;Lee, Seok-Hwan
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.219-228
    • /
    • 2002
  • The divided channel is not often used on the river and when the installation is for the controlling of the flow quantity. The determination of the channel size is not a easy task. Model tests are examined to confirm the variation of distribution rate by the method of the channel installation and the position of the structure and the adjustment of numerical simulation is executed by the comparing of the results. This study is to execute numerical model according to installation of divided channel by using AQUADYN program, the 2nd dimension numerical model, and HEC-RAS program, the 1st dimension numerical model, by the shape of divided channel. Also, it compares with difference by method about each case.

  • PDF

A removal characteristics of NOx at the cylinderical plasma reactor with magnetic field (자계가 인가된 원통형 플라즈마 반응기에서 질소산화물의 제거특성)

  • Park, Jae-Yoon;Lee, Dong-Hoon;Koh, Yong-Sul;Park, Sang-Hyun;Koh, Hee-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1782-1784
    • /
    • 1998
  • The effect of magnetic field was measured on NOx removal for cylinderical-wire plasma reactor with magnetic field applied to electric field vertically. Consumption power increased with increasing discharge voltage. When magnetic field was applied to electric field vertically, consumption power decreased NOx removal rate of plasma reactor with magnetic field were higher, 10-15%, than that of plsama reactor without magnetic field. And NOx removal rate decreased with increasing gas flow rate.

  • PDF

Simulation of Tidal Flow and Water Quality in Onsan Harbor System (온산 항만 시스템에서 조류와 수질 변화 시뮬레이션)

  • Kim, So-Yeon;Park, Seok-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 1999
  • Tidal flow and water quality were simulated in this paper to assess environmental impact caused by pier construction projects in Onsan harbor system. The Surfacewater Modeling System (SMS) was applied to the Onsan harbor system, where coastal reclamation and dredging were planned to build the piers. A finite element mesh was constructed and refined to cover the complicated geometry of the Onsan harbor and the proposed reclamation area. The time variable change of tidal height at harbor inlet was given as an input condition to tidal simulation. The water quality simulation was based on the discharge rate of suspended solids at the reclamation area. The simulation results have shown reasonable agreements with real situations in both tidal flow and water quality. According to the proposed plan, tidal flow and water quality were predicted during and after the pier construction. The tidal simulation study showed that there would be no discernible change of tidal current in the harbor except for the dredged area. The water quality simulation, however, predicted that suspended solids would increase significantly near the reclaimed and dredged areas during construction.

  • PDF

Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine (SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석)

  • Kim, Y.N.;Lee, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

A Comparative Study of 2-Dimensional Turbulence Models for Thermal Discharge (2차원 온배수 난류모형의 비교연구)

  • Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.225-235
    • /
    • 1999
  • For a comparative evaluation of three turbulence models in the analyses of thermal discharge behavior into a crossflow, a 2-dimemsional near-field numerical model is developed. The selected models are k-$\varepsilon$ and k-ι turbulence models as a 2-equation turbulence model and a 4-equation turbulence model in which the transport equations for mean of the temperature fluctuation squared and its dissipation rate for the consideration of buoyancy production and turbulent heat flux terms are added to a k-$\varepsilon$ turbulence model. The developed models are applied to a steady flow in an open channel with simple geometry and the numerical results agree with the existing experimental data. Numerical results of buoyancy induced gravitational lateral spreading by 4-equation turbulence model agree with the experimental data better than those of 2-quation turbulence models. The flow patterns by 4 and 2-equation turbulence models are similar.

  • PDF

Surface Modification of Polyurethane Film Using Atmospheric Pressure Plasma (대기압 플라스마에 의한 폴리우레탄 필름의 표면 개질)

  • Yang In-Young;Myung Sung-Woon;Choi Ho-Suk;Kim In-Ho
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.581-587
    • /
    • 2005
  • Commercial polyurethane film (PU) was modified with Ar plasma ionized in dielectric barrier discharge (DBD) plate-type reactor under atmospheric pressure. We measured the change of the contact angle and the surface fee energy with respect to the plasma treatment conditions such as treatment time, RF-power, and Ar gas flow rate. We also optimized the plasma treatment conditions to maximize the surface peroxide concentration. At the plasma treatment time of 70 sec, the power of 120 W and the Ar gas flow rate of 5 liter per minute (LPM), the best wettability and the highest surface fee energy were obtained. The 1,1 diphenyl-2-picrylhydrazyl (DPPH) method confirmed that the surface peroxide concentration was about 2.1 nmol/$\cm^{2}$ at 80 W, 30 sec, 6 LPM.

Non-thermal Plasma Process for simultaneous removal of SO2/NOx from a Sintering Plant of Steel Works

  • Nam, Chang-Mo;Mok, Young-Sun;Kwon, Gi-Hong;Suh, You-Duck;Cho, Byeung-Rak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.81-86
    • /
    • 2003
  • For the simultaneous removal of $SO_2$/NOx from an iron-ore sintering plant, industrial plasma experiments have been conducted with a flue gas flow rate of $5,000Nm^3/hr$. The maximum 40kW power using the magnetic pulse compression (MPC) system generates a peak value of 100-150kV pulse voltage with its risetime of 200nsec and full width at half maximum (FWHM) of 500nsec, and with a frequency <300Hz. The plasma reactor module adopts a wire-plate structure with a gap of 200-400mm ID between plates. Initial concentrations of $SO_2$ and NOx were around 100-150ppm, respectively in the presence of 15% $O_2$ and <10% $H_2O$. Various reaction parameters such as specific energy ($Whr/Nm^3$), $NH_3$ injection with corona discharge, flow rate and injection of hydrocarbons were investigated for $SO_2$/NOx removal characteristics. About 90/65% of $SO_2$/NOx were simultaneously removed with a specific energy of $3.0Whr/Nm^3$ when both $NH_3$ and hydrocarbons were injected. Practical implications that the pilot-scale plasma results provide are further discussed.

  • PDF