• Title/Summary/Keyword: discharge flow rate

Search Result 755, Processing Time 0.045 seconds

Near-Field Hydrodynamic Analysis of the Submerged Thermal Discharge Using CFD Model (CFD 모델을 이용한 수중방류 온배수의 근역 동수역학 해석)

  • Hwang, In-Tae;Kim, Deok-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.466-473
    • /
    • 2011
  • The buoyancy and initial momentum fluxes make near-field dominated by buoyant jet when thermal discharge releases underwater. In order to estimate prediction capabilities of those near-field phenomena, non-hydrostatic RANS applied CFD(Computational Fluid Dynamic) model was used. Condition of model was composed based on past laboratory experiments. Numerical simulations carried out for the horizontal buoyant jet in the stagnant flow and vertical buoyant jet into crossflow. The results of simulation are compared with the terms of trajectory and dilution rate of laboratory experiments and analytic model(CorJET) results. CFD model showed a good agreement with them. CFD model can be appropriate for assessment of submerged thermal discharge effect because CFD model can resolve the limitations of near-field analytic model and far-field quasi 3D hydrodynamic model. The accuracy and capability of the CFD model is reviewed in this study. If the computational efficiency get improved, CFD model can be widely applied for simulation of transport and diffusion of submerged thermal discharge.

Decomposition of Ethylene by Using Dielectric Barrier Discharge Plasma (유전체 배리어 방전 플라즈마를 이용한 에틸렌의 분해)

  • Jang, Doo Il;Lim, Tae Hun;Lee, Sang Baek;Mok, Young Sun;Park, Hoeman
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.608-613
    • /
    • 2012
  • Dielectric barrier discharge plasma reactor was applied to the removal of ethylene from a simulated storage facility ($1.0m^3$) of fruits and vegetables. The system operated in a closed-loop mode by feeding the contaminated gas to the plasma reactor and recirculating the treated gas back to the storage facility. The experiments were carried out with parameters such as discharge power, circulation flow rate, initial ethylene concentration and treatment time. The rate of ethylene decomposition was mainly controlled by the discharge power and the treatment time. With the other conditions kept constant, the ethylene decomposition rate in the presence of the manganese oxide ozone control catalyst installed downstream from the plasma reactor was lower than that in the absence of it. The suggests that unreacted ozone from the plasma reactor accumulated in the storage facility where it additionally decomposed ethylene. On the basis of an initial ethylene concentration of 50 ppm, the energy requirement for completing the decomposition was about 60 kJ.

Production of Hydrogen from Methane Using a 3 Phase AC Glidarc Discharge (3상 교류 부채꼴 방전을 이용한 메탄으로부터 수소 생산)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.132-139
    • /
    • 2007
  • Popular techniques for producing synthesis gas by converting methane include steam reforming and catalyst reforming. However, these are high temperature and high pressure processes limited by equipment, cost and difficulty of operation. Low temperature plasma is projected to be a technique that can be used to produce high concentration hydrogen from methane. It is suitable for miniaturization and for application in other technologies. In this research, the effect of changing each of the following variables was studied using an AC Glidarc system that was conceived by the research team: the gas components ratio, the gas flow rate, the catalyst reactor temperature and voltage. Glidarc plasma reformer was consisted of 3 electrodes and an AC power source. And air was added for the partial oxidation reaction of methane. The result showed that as the gas flow rate, the catalyst reactor temperature and the electric power increased, the methane conversion rate and the hydrogen concentration also increased. With $O_2/C$ ratio of 0.45, input flow rate of 4.9 l/min and power supply of 1 kW as the reference condition, the methane conversion rate, the high hydrogen selectivity and the reformer energy density were 69.2%, 36.2% and 35.2% respectively.

Generation of Silver Nanoparticles by Spark Discharge Aerosol Generator Using Air as a Carrier Gas (공기 분위기에서 스파크 방전을 이용한 은 나노입자 생성)

  • Oh, Hyun-Cheol;Jung, Jae-Hee;Park, Hyung-Ho;Ji, Jun-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.170-176
    • /
    • 2006
  • A spark discharge aerosol generator using air as a carrier gas has successfully been applied to silver nanoparticle production. The spark discharge between two silver electrodes, which was periodically obtained by discharging the capacitor, produced sufficient high temperatures to evaporate a small fraction of the silver electrodes. The silver vapor was subsequently supersaturated by rapid cooling and condensed to silver nanoparticles by nucleation and condensation. The morphology of the generated particles observed by transmission electron microscope was spherical. The element composition of the nanoparticles was silver, which was determined by energy dispersive X-ray spectroscopy. The crystal phase of the particles spark-generated under air atmosphere was composed of silver and silver oxides phase, which was determined by Xray diffraction analysis. While the nanoparticles generated under nitrogen atmosphere had only silver phase. This XRD data indicates that some fraction of the evaporated silver vapor could be oxidized in air atmosphere by the reaction with oxygen. A stable operation of the spark discharge generator has been achieved. The size and concentration of the particles can be easily controlled by altering the repetition frequency, capacitance, gap distance and flow rate of the spark discharge system.

Effect of Untreated Water Flow Rate at Certain Temperature on the Discharge of Treated Water

  • Ullah, Muhammad Arshad;Aslam, Muhammad;Babar, Raheel
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.6
    • /
    • pp.5-9
    • /
    • 2019
  • Desalination requires large energy. This experiment deals to desalinate brackish water through solar panels. The discharge from desalination plants is almost entirely water, and .01 percent is salt. Desalination is a process that extracts minerals from saline water. Solar-powered desalination technologies can be used to treat non-traditional water sources to increase water supplies in rural, arid areas. Water scarceness is a rising dilemma for large regions of the world. Access to safe, fresh and pure clean drinking water is one of the most important and prime troubles in different parts of the world. Among many of water cleansing technologies solar desalination/distillation/purification is one of the most sustainable and striking method engaged to congregate the supply of clean and pure drinkable water in remote areas at a very sound cost. Six types of dripper having discharge 3 - 8 lh-1 were installed one by one and measured discharge and volume of clean water indicated that at 6 lh-1 untreated water discharge have maximum evaporation and volume of clean water was 19.2 lh-1 at same temperature and radiations. Now strategy was developed that when increased the temperature the intake discharge of untreated water must be increased and salt drained water two times more than treated water.

A Direct Kinetic Study of Cl Atom Reactions (염소원자의 반응속도 연구)

  • Kwang Yul Choo
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.349-357
    • /
    • 1979
  • A non-Boltzman equilibrium population of $Cl(^2P_{1/2})$ atoms has been observed in a flow discharge-atomic absorpion experiment. The rates of reactions of $Cl(^2P_{3/2})$ atoms with various substrates are in reasonable agreement with reported values determined by competition methods. The similar reactivities of both $Cl(^2P_{1/2})$ and $Cl(^2P_{3/2})$ atoms indicate that the contribution of $Cl(^2P_{1/2})$ atoms to the rate measurements in the competition experiment is small, and this negligible contribution may be the reason why the rate constants obtained by assuming single reactive species (in competition method) agree well with our direct measurement.

  • PDF

SPH Modeling of Hydraulics and Erosion of HPTRM Levee

  • Li, Lin;Rao, Xin;Amini, Farshad;Tang, Hongwu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Post-Katrina investigations revealed that most earthen levee damage occurred on the levee crest and landward-side slope as a result of either wave overtopping, storm surge overflow, or a combination of both. In this paper, combined wave overtopping and storm surge overflow of a levee embankment strengthened with high performance turf reinforcement mat (HPTRM) system was studied in a purely Lagrangian and meshless approach, two-dimensional smoothed particle hydrodynamics (SPH) model. After the SPH model is calibrated with full-scale overtopping test results, the overtopping discharge, flow thickness, flow velocity, average overtopping velocity, shear stress, and soil erosion rate are calculated. New equations are developed for average overtopping discharge. The shear stresses on landward-side slope are calculated and the characteristics of soil loss are given. Equations are also provided to estimate soil loss rate. The range of the application of these equations is discussed.

A Study on the characteristics of Electron Energy Distribution function of the Radio-Frequency Inductively Coupled Plasma (고주파 유도결합 플라즈마의 전자에너지 분포함수 특성에 관한 연구)

  • 황동원;하장호;전용우;최상태;이광식;박원주;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.131-133
    • /
    • 1998
  • Electron temperature, electron density and electron energy distribution function were measured in Radio-Frequency Inductively Coupled Plasma(RFICP) using a probe method. Measurements were conducted in argon discharge for pressure from 10 mTorr to 40 mTorr and input rF power from 100W to 600W and flow rate from 3 sccm to 12 sccm. Spatial distribution of electron temperature, electron density and electron energy distribution function were measured for discharge with same aspect ratio (R/L=2). Electron temperature was found to depend on pressure, but only weakly on power. Electron density and electron energy distribution function strongly depended on both pressure and power. Electron density and electron energy distribution function increased with increasing flow rate. Radial distribution of the electron density and electron energy distribution function were peaked in the plasma center. Normal distribution of the electron density, electron energy distribution function were peaked in the center between quartz plate and substrate. These results were compared to a simple model of ICP, finally, we found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

Experimental study on enhancement of drying efficiency of organic solvent using ionic wind (이온풍을 이용한 유기용매의 건조 효율 향상에 관한 실험적 연구)

  • Lee, Jae Won;Sohn, Dong Kee;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • 'Ionic wind' is phenomenon induced by corona discharge which occurs when large electric potential is applied to electrodes with high curvature. The ionic wind has advantage that it could generate forced convective flow without any external energy like separate pump. In this study, 'pin-mesh' arrangement is utilized for experiments. First, optimization of configuration is conducted with local momentum of ionic wind behind the mesh. Empirical equation for prediction about velocity profile was derived using the measured results. Secondly, the enhancement of mass transfer rate of acetone with ionic wind was analyzed. Also, the drying efficiency using a fan which has same flow rate was compared with ionic wind for identification of additional chemical reaction. At last, the drying process of organic solvent was visualized with image processing. As a result, it was shown that the use of ionic wind could dry organic matter four times faster than the natural condition.

ANALYSIS OF VELOCITY STRUCTURE OF WALL JET ORIGINATING FROM CIRCULAR ORIFICES IN SHALLOW WATER

  • Kim, Dae-Geun;Seo, Il-Won
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.235-245
    • /
    • 2002
  • In this study, breakwater model which has several outlet pipes to discharge water is settled in the experimental open channel and mean velocity distributions of multi wall jet are measured. The length of flow of flow establishment of wall jet is shorter than that of free jet and decay rate of jet centerline longitudinal velocity along x is linear in 0.3 $\leq$ x/$\l_q$ $\leq$ 17. The rate of vertical width and lateral width spreading of multi wall jet is respectively 0.0753, 0.157~0.190.

  • PDF