• Title/Summary/Keyword: discharge flow rate

검색결과 755건 처리시간 0.029초

균일조도관의 양해법 설계 기준식 (Basic Equations for Explicit Design of Uniformly Rough Pipe)

  • 유동훈
    • 물과 미래
    • /
    • 제28권5호
    • /
    • pp.175-189
    • /
    • 1995
  • 어떤 조건이 주어져 있을 때 펌프의 일률, 관내유출률, 관경 등이 보통 관로설계에서 요구되는 사항들이다. 여러 연구자들의 연구 덕택으로 이제 수리조건이 주어지면 관마찰계수는 양해법으로 바로 산정할 수 있게 되었다. 그러나 많은 관로설계에 있어 관내 조면이 귤일하게 분포되어 있다 하더라도 기존방법을 사용하여서는 수리조건을 미리 결정할 수 없다. 이러한 경우 정확한 해를 구하기 위하여는 흔히 여러번 반복시산하여야 되는 어려움이 따른다. 본고는 균일조도관인 경우이러한 반복과정을 거치지 않고 유출률과 관경 등을 바로 결정하는 방법을 제시하였다. 전개과정중 새로운 무차원수, 동력관경수, 동력유출수와 유출경사수등을 도출하였음을 밝히며, 이로부터 양해법 산정식을 개발할 수 있었다.

  • PDF

유전체 장벽 방전 플라즈마 반응기를 이용한 페놀 처리 (Phenol Treatment Plasma Reactor of Dielectric Barrier Discharge)

  • 박영식
    • 한국환경과학회지
    • /
    • 제21권4호
    • /
    • pp.479-488
    • /
    • 2012
  • A Dielectric barrier discharge (DBD) plasma is shown in the present investigation to be effective of phenol degradation in the aqueous solutions in batch reactor with continuous air bubbling. Removal of phenol and effects of various parameters on the removal efficiency in the aqueous solution with high-voltage streamer discharge plasma are studied. The effect of 1st voltage (80 ~ 220 V), air flow rate (3 ~ 7 L/min), pH (3 ~ 11), electric conductivity of solution (4.16 ${\mu}S$/cm, deionized water) ~ 16.57 mS/cm (addition of NaCl 10 g/L) and initial phenol concentration (2.5 ~ 20.0 mg/L) were investigated. The observed results showed that phenol degradation was higher in the basic solution than that of the acidic. The optimum values on the 1st voltage and air flow rate for phenol degradation were 140 V and 6 L/min, respectively. It was considered that absorbance variation of $UV_{254}$ of phenol solution can be use as an indirect indicator of change of the non-biodegradable organic compounds within the treated phenol solution. Electric conductivity was not influenced the phenol degradation. To obtain the removal efficiency of phenol and COD of phenol over 97 % (initial phenol concentration, 10.0 mg/L), 80 min and 120 min were need, respectively. Phenol and COD degradation showed a pseudo-first order kinetics.

전극 형태에 따른 평판형 오존발생기의 특성 (The Characteristics of Plate Type Ozonizer with Variation of Electrode Form)

  • 윤병한;이창호;우성훈;이광식
    • 조명전기설비학회논문지
    • /
    • 제22권1호
    • /
    • pp.149-156
    • /
    • 2008
  • 최근 오존은 그 활용성을 인정받아 다양한 분야에서 사용되고 있으며, 그 수요 또한 계속 증가하는 추세이다. 이에 다양한 종류의 오존발생기가 연구되고 있으며, 고농도 및 고수율을 얻는 것이 연구목표라 할 수 있다. 본 논문에서는 전극 형태에 따른 평판형 오존발생기를 제작하여 원료가스의 유량 및 방전전력의 변화에 의한 오존생성농도, 오존생성량 및 오존생성수율 특성을 연구하였다.

Optical emission analysis of hybrid air-water discharges

  • Pavel, Kostyuk;Park, J.Y.;Han, S.B.;Koh, H.S.;Gou, B.K.;Lee, H.W.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.521-522
    • /
    • 2006
  • In this paper, hybrid air-water discharges were used to develop an optimal condition for providing a high level of water decomposition for hydrogen yield. Electrical and optical phenomena accompanying the discharges were investigated along with feeding gases, flow rates, and point-to-plane electrode gap distance. The primary focus of this experiment was put on the optical emission of the near UV range, with the energy threshold sufficient for water dissociation and excitation. The $OH(A^{2+},'=0\;X^2,"=0$) band's optical emission intensity indicated the presence of plasma chemical reactions involving hydrogen formation. In the gaseous atmosphere saturated with water vapor the OH(A-X) band intensity was relatively high compared to the liquid and transient phases although the optical emission strongly depended on the flow rate and type of feeding gas. In the gaseous phase discharge phenomenon for Ar carrier gas transformed into a gliding arc via the flow rate growth. OH(A-X) band's intensity increased according to the flow rate or residence time of He feeding gas. Reciprocal tendency was acquired for $N_2$ and Ar carrier gases. The peak value of OH(A-X) intensity was observed in the proximity of the water surface, however in the cases of Ar and $N_2$ with 0.5 SLM flow rate peaks shifted to the region below the water surface. Rotational temperature ($T_{rot}$) was estimated to be in the range of 900-3600 K, according to the carrier gas and flow rate, which corresponds to the arc-like-streamer discharge.

  • PDF

저온플라즈마에 의한 질소산화물의 제거에 관한 연구 (A Study on Removal of NOx by Low Temperature Plasma)

  • 박희재;이내우;최재욱;임우섭
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.540-543
    • /
    • 2010
  • 가스 중에 포함되어 있는 질소산화물을 안전하게 처리하기 위하여 저온 플라즈마 반응기를 제작하여 반응기내에 공급되는 반응물질의 유량과 방전주입전력량에 대한 장치의 특성을 실험적으로 조사하고, 유효성을 검정하였다. 반응가스는 $NO/N_2$ 혼합가스와 $N_2/O_2$ 혼합가스를 이용하여 초기 NO 농도를 설정하고, 유속을 1~4 l/min으로 공급하였다. 반응물질의 유량이 증가할 때 NO의 감소율이 낮고, 방전주입전력이 높을 때 NO의 분해가 용이하였다. 또한 반응물질의 지연시간이 길고 방전주입전력이 높을수록 NO의 분해에너지 효율이 높았으며, 유량이 많고 방전 주입 전력량이 증가할수록 오존의 생성량이 증가하였다.

천해역에 수표면 및 수중방류된 사각형제트의 흐름 거동 (Flow behaviors of square jets surface discharged and submerged discharged into shallow water)

  • 김대근;김동옥
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.627-634
    • /
    • 2011
  • In the present study, the flow behaviors of square jets surface discharged and submerged discharged into shallow water were each simulated using computational fluid dynamics, and the results were compared. As for the verification of the models, the results of the hydraulic experiment conducted by Sankar, et al. (2009) were used. According to the results of the verification, the present application of computational fluid dynamics to the flow analysis of square jets discharged into shallow water was valid. As for the wall jet, which is one form of submerged discharges, at the bottom wall boundary, the peak velocity of the jet rapidly moved from the center of the jet to the bottom wall boundary due to the restriction of jet entrainment and the no-slip condition of the bottom wall boundary, and, as for the surface discharge, because jet entrainment is limited on the free water surface, the peak velocity of the jet moved from the center of the jet to the free water surface. This is because jet entrainment is restricted at the bottom wall boundary and the surface so that the momentum of the central core of the jet is preserved for considerable time at the bottom wall boundary and the surface. In addition, due to the effect of the bottom wall boundary and the free water surface, the jet discharged into shallow water had a smaller velocity diminution rate near the discharge outlet than did the free jet; at a location where it was so distant from the discharge outlet that the vertical profile of the velocity was nearly equal (b/x =20~30), moreover, it had a far smaller velocity diminution rate than did the free jet due to the effect of the finite depth.

하수처리수 방류 하천의 물환경과 저서성 대형무척추동물 군집 생태 연구 (A Study on Water Environment and Benthic Macroinvertebrate Community in Reclaimed Wastewater Effluent Dominated Stream)

  • 손정원;곽진숙;조갑제;류동춘
    • 한국물환경학회지
    • /
    • 제37권3호
    • /
    • pp.190-203
    • /
    • 2021
  • Water quality, benthic macroinvertebrate communities, and other factors were investigated to explore the effects of the effluent discharge from a sewage treatment plant into Jwagwang stream in Busan in 2019. During the study period, the flow rate of this stream was in the range of 10,400 m3/day to 52,200 m3/day except for the discharge of about 24,000 m3/day of the effluent. After discharge, the flow velocity increased by about 65% and the water depth increased by about 40%. At sites downstream of the discharge point, BOD, COD, TOC, T-N, T-P, and other water quality values were worse than those of the upstream sites. The periphytic algal chlorophyll-a concentrations in the natural substrata were higher than those of the upstream sites, especially in May and August. However, at sites downstream of the discharge point, the individual numbers of Annelida were decreased and individual numbers of the insecta of arthropoda were increased. Also, species numbers and the diversity and dominance indexes were improved in the sites downstream of the discharge point. The functional feeding groups (FFGs) of collector-filterers were increased and the habitat orientation groups (HOGs) of sprawlers, burrowers, and clingers were especially increased at the sites with additional reclaimed wastewater effluent flow. Regardless of the effluent discharge, BMI, an indicator of ecological stream health using benthic macroinvertebrate species, did not show large gaps between the study points. Although the water quality of the sites downstream of the discharge point was much worse than those upstream, their ecosystem soundness was better than those of the upstream sites from an ecological perspective.

내부전극의 전공도 변화형 오존발생기의 특성 (Characteristics of Vaccum Variation Type Ozonizer of Internal Electrode)

  • 이창호;전병준;김영재;이광식
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2003년도 학술대회논문집
    • /
    • pp.387-391
    • /
    • 2003
  • In this paper, a double cylindrical type superposed silent discharge type ozonizer which internal electrode can be produced a vacuum has been designed and manufactured Discharge and ozone generation characteristics have been investigated in accordance with output voltage of power supply, flow-rate, discharge power and vacuum of internal electrode.

  • PDF

실제기체 효과를 고려한 수소기체의 임계노즐 유동에 관한 연구 (Study on the Critical Nozzle Flow of Hydrogen Gas with Real Gas Effects)

  • 김재형;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3003-3008
    • /
    • 2007
  • Critical nozzle has been frequently employed to measure the flow rate of various gases, but hydrogen gas, especially being at high-pressure condition, was not nearly dealt with the critical nozzle due to treatment danger. According to a few experimental data obtained recently, it was reported that the discharge coefficient of hydrogen gas through the critical nozzle exceeds unity in a specific range of Reynolds number. No detailed explanation on such an unreasonable value was made, but it was vaguely inferred as real gas effects. For the purpose of practical use of high-pressure hydrogen gas, systematic research is required to clarify the critical nozzle flow of high-pressure hydrogen gas. In the present study, a computational fluid dynamics(CFD) method has been applied to predict the critical nozzle flow of high-pressure hydrogen gas. Redlich-Kwong equation of state that take account for the forces and volume of molecules of hydrogen gas were incorporated into the axisymmetric, compressible Navier-Stokes equations. A fully implicit finite volume scheme was used to numerically solve the governing equations. The computational results were validated with some experimental data available. The results show that the coefficient of discharge coefficient is mainly influenced by the compressibility factor and the specific heat ratio, which appear more remarkable as the inlet total pressure of hydrogen gas increases.

  • PDF

낙동강수계 수질오염총량관리를 위한 유량조사 평가 (Evaluation on Actual Discharge Data for TMDL in Nakdong River Basin)

  • 김경훈;김용석;박배경;윤종수;신찬기
    • 환경위생공학
    • /
    • 제23권4호
    • /
    • pp.65-71
    • /
    • 2008
  • To drive efficiently total water pollution load management, needs to calculate the exact load emissions, pollution load allocation and implementation evaluation in each unit area of watershed and accurate and regular flow of data. For these reasons, the Nakdong River TMDL Research Center has produced directly or indirectly in the average interval of eight days (30 times or more / year) 41 points for unit area of the total water pollution load management and 8-point of municipal requirement for a total of 49 branches as a flow data in 2004 from August. This acquired the survey flow is evidence of trends and changes each point in the Nakdong River based on time, such as 10 years based on average design flow available to the foundation of the summit as the major water policy is to be utilized. This study was performed on actual discharge measuring data and introduced performance results each drainage basin of Nakdong River from 2004 to 2008 over the total of past five years.