• Title/Summary/Keyword: discharge currents

Search Result 148, Processing Time 0.021 seconds

Measurement of Optogalvanic Signal in Hollow Cathode Discharge Tube (Hollow Cathode Discharge Tube에서의 광검류 신호 측정)

  • Lee, Jun-Hoi;Yoon, Man-Young;Kim, Song-Kang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.874-877
    • /
    • 2002
  • The optogalvanic signals were measured using hollow cathode discharge tube with argon as buffer gas at change of discharge currents. A change of ionization rate due to electron collision causes an increase or decrease of the electric conductivity. This change in electric conductivity generates the optogalvanic signal. We conclude that optogalvanic signal has close relation with the lowest metastable atoms density at low current.

  • PDF

A Method for Determination of 3D-Electrical Discharge Machining Parameters Using Z-map (Z-map을 이용한 3차원 방전가공조건의 결정방법)

  • 주상윤;이건범
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.4
    • /
    • pp.355-359
    • /
    • 1999
  • This paper presents a method for determining machining parameters in electrical discharge machining process (EDM) based on discharge area. The parameters are the peak value of currents, the pulse-on time, and the pulse-off time, on which the EDM performance depends chiefly. The optimal machining parameters are closely related on discharge area, which can be calculated from a tool electrode and a discharge height. In the paper the discharge area is obtained from NC code for machining the tool electrode instead of its geometric model. The method consists of following three steps. First a Z-Map model is constructed from the NC code. Secondly, the discharge area is obtained from the Z-Map model and a Z-height. Finally, the machining parameters are calculated from the discharge area. An introduced example shows that the machining parameters are calculated by the using a Z-map model obtained from the machining data for a tool electrode.

  • PDF

Characteristics of a Sea Area due to the Discharge through Yongam-Kumho Sea Dike (영암-금호방조제 방류에 의한 해역 특성)

  • 김강민;김상훈;유하상;정대득
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.173-178
    • /
    • 2004
  • Due to the development of Yongsan river estuary weir and Yongam-Kumho sea dike, Mokop coastal area is changed. Especially, Discharged water through Yongsan river estuary weir and Yongam-Kumho sea dike, may cause the environmental influences such as the changes of currents pattern and sedimentation in the vicinity of semi-closed Mokpo harbor. This study deals with the collection and analysis of discharge through estuary weir and sea dike, based on that, we analyzed a characteristics of a sea area from simulation. As the results of this study, it is known that discharge causes the changes of a tidal currents pattern and calculated depth variations showed close relation with tidal circulation.

  • PDF

Determination of Parameters for 3-Dimensional Electrical Discharge Machining by a Tool Electrode Surface (공구전극곡면에 의한 3차원 방전가공조건의 결정)

  • 주상윤;이건범
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • This paper presents a method for determining machining parameters in 3-dimentional electrical discharge machining(EDM). The parameters are the peak value of currents, the pulse-on time, and the pulse-off time. It is known that they influence the performance of EDM more than the other else. The parameters are determined from the discharge area between a tool electrode and a work piece. The discharge area is directly influenced by the geometry of a tool surface and the tool discharge position. The discharge area on a tool discharge position is calculated from intersection curves between the tool surface and a horizontal plane. The grid search method is applied to determine the intersection curves. An example is introduced to show that the machining parameters are obtained from the surface geometry of a tool electrode.

  • PDF

AFCI algorithm design without sensor (센서없는 AFCI 알고리즘 설계)

  • Ban, Gi-Jong;Choi, Sung-Dai;Ho, Yoon-Kwang;Kim, Sang-Hoon;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.231-233
    • /
    • 2006
  • Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this paper, arc current control algorithm is designed for the interruption of arc fault current which is occurred in the low voltage network. This arc is one of the main causes of electric fire. General arc current sensor has troubles for detecting arc currents, thus we would like to propose the arc current detection method without current sensor. In this paper, arc discharge currents within power lines are being detected through the arc current control algorithm.

  • PDF

Spread Patterns of Thermal Effluent Discharged From Young-Kwang Nuclear Power Plant Using Remote Sensing Data

  • Han J. G.;Yeon Y. K.;Chi K. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.331-335
    • /
    • 2004
  • This study is focused to analyze the movement of thermal effluent dischargeed from nuclear power plant by season, ebb and flow, and before and after foundation of tide embankment using thermal infrared band image of 28 scenes observed from Landsat from 1987 to 2004, which is the early stage of operation of young-kwang nuclear power plant. In diffusion of thermal effluent discharge by seasons, spring and summer is spreading further than autumn and winter. It is considered to distribute widely mixed with thermal effluent discharge and hot water, which is distributed naturally along the seaside. It is known the fact that tidal currents control the direction of diffusion of thermal effluent discharge by the change of ebb and flow. Namely, it is distributed widely on the Southwest direction along the seaside by tidal currents when ebb and, it is moved widely on the Northeast direction along the seaside by tidal current when flood. However, in the early stage of flood current, the mainstream of thermal effluent discharge is spread on Southwest direction and, the direction is changed on North­east way when the latter period of flood current. Similarly, in the early stage of ebb current, the mainstream of thermal effluent discharge is spread on Northeast direction and, the direction is changed on Southwest direction when the latter period of ebb current. As the result of comparing to the diffusion pattern of thermal effluent discharge before and after the foundation of seawall, discharged thermal effluent from the drain of plant by the foundation of dike is shown as curved circle pattern on Northeast to West direction from the ending portion of the seawall.

  • PDF

Determination of Electrical Discharge Machining Parameters from the CMM data of a Electrode (전극의 3차원 측정데이터로부터 방전가공조건 결정)

  • 주상윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.58-64
    • /
    • 2000
  • This paper proposes a method for determining optimal EDM parameters based on discharge area from the physical model of a tool electrode. Main parameters, which affect the EDM performance, are peak value of currents, pulse-on time, and pulse-off time. Such parameters are closely dependent on the discharge area in EDM process. In this paper the discharge area is estimated from the CMM scanning data to the tool electrode. The method is very useful when any geometric information to the tool electrode is not provided from tool modeler or producer. The method consists of following four steps. First a triangulation mesh is constructed from the CMM data. Secondly, the z-map is modeled from the triangulated mesh. Thirdly, the discharge area is estimated from intersection between the z-map model and a z-height plane. Finally, the machining parameters are easily calculated by some known EDM equations to the discharge area. An example is introduced to show that the machining parameters are calculated from the CMM data to a tool electrode.

  • PDF

Application of Thermal Discharge Dispersion Model on Cheonsu Bay (천수만 해역에서 온배수 확산모델의 적용)

  • 박영기
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.169-180
    • /
    • 1995
  • This Daper presents effective simulation of the dispersion of thermal discharge which can be relesed at Boryong power plant. Applied numerical models are finite difference method for hydrodynamic analysis and Masch-model comprised of conditions for ambient current velocity. Application of these models is done in Cheonsu Bay Summing up the results of this study are as follows; 1. It is found that the result for measurements of temperature appears high at southwardly Songdo on flood. The reason is that tidal currents which flowed north direction were accompanied with southwardly dispersed thermal discharge. A minute Particle of thermal Plume has a tendency to dispels inward Deacheon Bay. 2. According to the results of numerical experiment, maximum distance for thermal discharge dispersion appeared 10.8 km at lower part and 8.6 km at upper part with power plant outlet as starting point. 3. Comparative the numerical simulation and Airbone Multispectral Scanner indicated that thermal discharge should be verified separative phenomena. The simulated results were compared with field data set showing good agreement. It is concluded that these model can be simulated well.

  • PDF

Study on Characteristics of Plasma in Hollow Cathode Discharge (Hollow Cathode Discharge에서 플라즈마 특성에 관한 연구)

  • Yoon, Man-Young;Shin, Jong-Soon
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.23 no.2
    • /
    • pp.93-101
    • /
    • 2005
  • The measured plasma temperature of Ar hollow cathode discharge for several metal cathodes are about $620\;{\sim}\;780K$ at discharge current of $7\;{\sim}\;10mA$. The optogalvanic signals were measured using hollow cathode discharge tube with argon as buffer gas at change of discharge currents. A change of ionization rate due to electron collision causes an increase or decrease of the electric conductivity. This change in electric conductivity generates the optogalvanic signal. We conclude that optogalvanic signal has close relation with the lowest metastable atoms density at low current.

  • PDF

Numerical Simulation of the Water Temperature in the Al-Zour Area of Kuwait

  • Lee, Myung Eun;Kim, Gunwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.334-343
    • /
    • 2019
  • The Al-Zour coastal area, located in southern Kuwait, is a region of concentrated industrial water use, seawater intake, and the outfall of existing power plants. The Al-Zour LNG import facility project is ongoing and there are two issues regarding the seawater temperature in this area that must be considered: variations in water temperature under local meteorology and an increase in water temperature due to the expansion of the thermal discharge of expanded power plant. MIKE 3 model was applied to simulate the water temperature from June to July, based on re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the thermal discharge input from adjacent power plants. The annual water temperatures of two candidate locations of the seawater intake for the Al-Zour LNG re-gasification facility were measured in 2017 and compared to the numerical results. It was determined that the daily seawater temperature is mainly affected by thermal plume dispersion oscillating with the phase of the tidal currents. The regional meteorological conditions such as air temperature and tidal currents, also contributed a great deal to the prediction of seawater temperature.