• Title/Summary/Keyword: disasters

Search Result 2,417, Processing Time 0.025 seconds

A Study on Collaborative Network for Coping with COVID-19 Using Social Network Analysis (소셜 네트워크 분석을 활용한 코로나19 대응 협력 네트워크에 관한 연구)

  • Oh, Juyeon;Kim, Jinjae;Lee, Taeho;Suh, Woojong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.3
    • /
    • pp.89-108
    • /
    • 2022
  • The purpose of this study is to reveal the specific current and future shapes of the collaborative network among organizations witch cope the COVID-19 in Korea. For this, this study conducted social network analysis, based on the response data of 73 experts from 36 COVID-19-related organizations. As a result of the analysis, it was confirmed that the Korea Disease Control and Prevention Agency (KDCA) plays a pivotal role as a control tower in coping COVID-19 in all of the analysis of degree, betweenness, and closeness centrality. In addition, the results revealed concrete forms of collaborative relationships among participating organizations in the public and private sectors that constitute the present and future networks centered on the KDCA. Furthermore, this study presented which organizations and relationships should be the focus of establishing a future collaborative network through comparative analysis between the current cooperative network and the network to be built in the future. The analysis results and discussions of this study are expected to be used as useful information for policy development related to collaborative networks that can effectively respond to disasters caused by new diseases in the future.

Hydrological drought risk assessment for climate change adaptation in South Korea (기후변화 적응을 위한 우리나라 수문학적 가뭄 위험도 평가)

  • Seo, Jungho;Chi, Haewon;Kim, Heey Jin;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.421-435
    • /
    • 2022
  • As natural disasters have been increasing due to climate change, sustainable solutions are in need to alleviate the degree of drought hazard, assess and project the drought influence based on future climate change scenarios. In assessing drought risk, socio-economic factors of the region must be considered along with meteorological factors. This study categorized drought hazard, exposure, and vulnerability as three major components of drought risk according to the Intergovernmental panel on Climate Change (IPCC) risk assessment framework, and selected indices for each component to quantify the drought risk in South Korea according to the mid-size basins. Combinations of climate scenarios (Representative Concentration Pathway; RCP 2.6 and RCP 8.5) and socio-economic scenarios (Shared Socio-economic Pathways; SSP 1, SSP2 and SSP3) for the near future (2030-2050) ant the far future (2080-2099) were utilized in drought risk analysis, and results were compared with the historical data (1986-2005). In general, the drought risks for all scenarios shows large increases as time proceeds to the far furture. In addition, we analyzed the rank of drought hazard, exposure, vulnerability for drought risk, and each of their contribution. The results showed that the drought hazard is the most contributing component to the increase of drought risk in future and each basin shows varying contributing components. Finally, we suggested countermeasures for each basin according to future climate change scenarios, and thus this study provides made the basis for establishing drought management measures.

A Study on How to Lower the Grounding Impedance by Needles-typed Grounding Rods (접지침봉에 의한 접지임피던스를 낮추는 방안 연구)

  • Park, Sung-Yeol
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.19-28
    • /
    • 2022
  • Purpose: One of the methods for preventing disasters such as fire, explosion, and electric shock caused by electricity is to perform grounding. In case of the grounding current includes a frequency component having a high, it is preferable to measure grounding impedance rather than grounding resistance. This study proposes countermeasures to reduce grounding impedance to suppress an ground potential rise due to a grounding current having a frequency component of several kHz or more. Method: General grounding rods and needles-typed grounding rods were buried in the ground, and grounding resistance and grounding impedance were measured, respectively. The characteristics of grounding impedance according to frequency were identified. Result: There was little difference in the measurement results of the grounding resistance between general grounding rods and needles-typed grounding rods. In a frequency range lower than 62.5kHz, there was little difference in the measurement results of the grounding resistance between general grounding rods and needles-typed grounding rods. In a frequency range higher than 62.5kHz, the grounding impedance of needles-typed grounding rods was reduced by about 15% than the grounding impedance of general grounding rods. Conclusion: In the commercial frequency domain, it is effective to connect several grounding rods (common grounding) to lower the grounding resistance value. In the frequency domain of several kHz or more, it is expected that needles-typed grounding rods can effectively reduce the ground potential rise due to the grounding current.

A Study on the Flooding Risk Assessment of Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 침수 위험성 평가에 관한 연구)

  • Ryu, Seong-Reul
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • Purpose: For smooth performance of flood analysis due to heavy rain disasters at energy storage facilities in the Incheon area, field surveys, observational surveys, and pre-established reports and drawings were analyzed. Through the field survey, the characteristics of pipelines and rivers that have not been identified so far were investigated, and based on this, the input data of the SWMM model selected for inundation analysis was constructed. Method: In order to determine the critical duration through the probability flood analysis according to the calculation of the probability rainfall intensity by recurrence period and duration, it is necessary to calculate the probability rainfall intensity for an arbitrary duration by frequency, so the research results of the Ministry of Land, Transport and Maritime Affairs were utilized. Result: Based on this, the probability of rainfall by frequency and duration was extracted, the critical duration was determined through flood analysis, and the rainfall amount suggested in the disaster prevention performance target was applied to enable site safety review. Conclusion: The critical duration of the base was found to be a relatively short duration of 30 minutes due to the very gentle slope of the watershed. In general, if the critical duration is less than 30 minutes, even if flooding occurs, the scale of inundation is not large.

A Study on the Performance Degradation Pattern of Caisson-type Quay Wall Port Facilities (케이슨식 안벽 항만시설의 성능저하패턴 연구)

  • Na, Yong Hyoun;Park, Mi Yeon;Jang, Shinwoo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.146-153
    • /
    • 2022
  • Purpose: In the case of domestic port facilities, port structures that have been in use for a long time have many problems in terms of safety performance and functionality due to the enlargement of ships, increased frequency of use, and the effects of natural disasters due to climate change. A big data analysis method was studied to develop an approximate model that can predict the aging pattern of a port facility based on the maintenance history data of the port facility. Method: In this study, member-level maintenance history data for caisson-type quay walls were collected, defined as big data, and based on the data, a predictive approximation model was derived to estimate the aging pattern and deterioration of the facility at the project level. A state-based aging pattern prediction model generated through Gaussian process (GP) and linear interpolation (SLPT) techniques was proposed, and models suitable for big data utilization were compared and proposed through validation. Result: As a result of examining the suitability of the proposed method, the SLPT method has RMSE of 0.9215 and 0.0648, and the predictive model applied with the SLPT method is considered suitable. Conclusion: Through this study, it is expected that the study of predicting performance degradation of big data-based facilities will become an important system in decision-making regarding maintenance.

Evaluation of hydropower dam water supply capacity (III): development and application of drought operation rule for hydropower dams in Han river (발전용댐 이수능력 평가 연구 (III): 한강수계 발전용댐 가뭄단계별 운영기준 개발 및 효과 분석)

  • Jeong, Gimoon;Kang, Doosun;Kim, Taesoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.531-543
    • /
    • 2022
  • Integrated water resources management (IWRM) has focused on efficient response to various water related disasters by climate change. In particular, more flexible usage of conventional water resources infrastructures is expected to provide an eco-friendly water management. Multi-purpose dams and water supply dams are well known as water management facilities for securing and supplying water in drought season. Recently, based on the report '2021 multi-purpose use of hydropower dams in Han river', contribution of hydropower dams on water resources management is becoming more significant beyond the traditional role of hydropower generation. In drought conditions, the dams control water supply depending on the pre-defined drought stages. In the case of multi-purpose dams, an operation standard during drought has been already prepared and applied; however, for the hydropower dams, specific standards are not fully prepared yet in South Korea. In this study, a method for calculation of standard water storage and discharge reduction of hydropower dams according to drought stage is newly proposed reflecting the characteristics of hydropower dams. The proposed method was applied to the hydropower dams in Han river, where six hydropower dams are located. A case study of the historical droughts occurred in 2014-2017 demonstrated that the proposed hydropower dam operation rule could improve the water supply stability under severe drought conditions compared to the conventional operations. In the future, the role of hydropower dams for water resources management is expected to become more important, and this study can be widely used for water supply planning such as drought response using hydropower dams.

Development of A Quantitative Risk Assessment Model by BIM-based Risk Factor Extraction - Focusing on Falling Accidents - (BIM 기반 위험요소 도출을 통한 정량적 위험성 평가 모델 개발 - 떨어짐 사고를 중심으로 -)

  • Go, Huijea;Hyun, Jihun;Lee, Juhee;Ahn, Joseph
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.15-25
    • /
    • 2022
  • As the incidence and mortality of serious disasters in the construction industry are the highest, various efforts are being made in Korea to reduce them. Among them, risk assessment is used as data for disaster reduction measures and evaluation of risk factors at the construction stage. However, the existing risk assessment involves the subjectivity of the performer and is vulnerable to the domestic construction site. This study established a DB classification system for risk assessment with the aim of early identification and pre-removal of risks by quantitatively deriving risk factors using BIM in the risk assessment field and presents a methodology for risk assessment using BIM. Through this, prior removal of risks increases the safety of construction workers and reduces additional costs in the field of safety management. In addition, since it can be applied to new construction methods, it improves the understanding of project participants and becomes a tool for communication. This study proposes a framework for deriving quantitative risks based on BIM, and will be used as a base technology in the field of risk assessment using BIM in the future.

Assessment of Lodged Damage Rate of Soybean Using Support Vector Classifier Model Combined with Drone Based RGB Vegetation Indices (드론 영상 기반 RGB 식생지수 조합 Support Vector Classifier 모델 활용 콩 도복피해율 산정)

  • Lee, Hyun-jung;Go, Seung-hwan;Park, Jong-hwa
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1489-1503
    • /
    • 2022
  • Drone and sensor technologies are enabling digitalization of agricultural crop's growth information and accelerating the development of the precision agriculture. These technologies could be able to assess damage of crops when natural disaster occurs, and contribute to the scientification of the crop insurance assessment method, which is being conducted through field survey. This study was aimed to calculate lodged damage rate from the vegetation indices extracted by drone based RGB images for soybean. Support Vector Classifier (SVC) models were considered by adding vegetation indices to the Crop Surface Model (CSM) based lodged damage rate. Visible Atmospherically Resistant Index (VARI) and Green Red Vegetation Index (GRVI) based lodged damage rate classification were shown the highest accuracy score as 0.709 and 0.705 each. As a result of this study, it was confirmed that drone based RGB images can be used as a useful tool for estimating the rate of lodged damage. The result acquired from this study can be used to the satellite imagery like Sentinel-2 and RapidEye when the damages from the natural disasters occurred.

Detection of Urban Trees Using YOLOv5 from Aerial Images (항공영상으로부터 YOLOv5를 이용한 도심수목 탐지)

  • Park, Che-Won;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1633-1641
    • /
    • 2022
  • Urban population concentration and indiscriminate development are causing various environmental problems such as air pollution and heat island phenomena, and causing human resources to deteriorate the damage caused by natural disasters. Urban trees have been proposed as a solution to these urban problems, and actually play an important role, such as providing environmental improvement functions. Accordingly, quantitative measurement and analysis of individual trees in urban trees are required to understand the effect of trees on the urban environment. However, the complexity and diversity of urban trees have a problem of lowering the accuracy of single tree detection. Therefore, we conducted a study to effectively detect trees in Dongjak-gu using high-resolution aerial images that enable effective detection of tree objects and You Only Look Once Version 5 (YOLOv5), which showed excellent performance in object detection. Labeling guidelines for the construction of tree AI learning datasets were generated, and box annotation was performed on Dongjak-gu trees based on this. We tested various scale YOLOv5 models from the constructed dataset and adopted the optimal model to perform more efficient urban tree detection, resulting in significant results of mean Average Precision (mAP) 0.663.

KOMPSAT Image Processing and Application (다목적실용위성 영상처리 및 활용)

  • Lee, Kwang-Jae;Kim, Ye-Seul;Chae, Sung-Ho;Oh, Kwan-Young;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1871-1877
    • /
    • 2022
  • In the past, satellite development required enormous budget and time, so only some developed countries possessed satellites. However, with the recent emergence of low-budget satellites such as micro-satellites, many countries around the world are participating in satellite development. Low-orbit and geostationary-orbit satellites are used in various fields such as environment and weather monitoring, precise change detection, and disasters. Recently, it has been actively used for monitoring through deep learning-based object-of-interest detection. Until now, Korea has developed satellites for national demand according to the space development plan, and the satellite image obtained through this is used for various purpose in the public and private sectors. Interest in satellite image is continuously increasing in Korea, and various contests are being held to discover ideas for satellite image application and promote technology development. In this special issue, we would like to introduce the topics that participated in the recently held 2022 Satellite Information Application Contest and research on the processing and utilization of KOMPSAT image data.