• 제목/요약/키워드: direction of joint

검색결과 676건 처리시간 0.032초

Assessment of pull-out behavior of tunnel-type anchorages under various joint conditions

  • Junyoung Ko;Hyunsung Lim;Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • 제36권1호
    • /
    • pp.71-81
    • /
    • 2024
  • This study analyzes the pull-out behavior of tunnel-type anchorage under various joint conditions, including joint direction, spacing, and position, using a finite element analysis. The validity of the numerical model was evaluated by comparing the results with a small-scaled model test, and the results of the numerical analysis and the small-scaled model test agree very well. The parametric study evaluated the quantitative effects of each influencing factor, such as joint direction, spacing, and position, on the behavior of tunnel-type anchorage using pull-out resistance-displacement curves. The study found that joint direction had a significant effect on the behavior of tunnel-type anchorage, and the pull-out resistance decreased as the displacement level increased from 0.002L to 0.006L (L: anchorage length). It was confirmed that the reduction in pull-out resistance increased as the number of joints in contact with the anchorage body increased and the spacing between the joints decreased. The pull-out behavior of tunnel-type anchorage was thus shown to be significantly influenced by the position and spacing of the rock joints. In addition, it is found that the number of joints through which the anchorage passes, the wider the area where the plastic point occurs, which leads to a decrease in the resistance of the anchorage.

소매설계기준 개발을 위한 상지체표변화구조에 관한 연구 (A Study on the Mechanism of Arm Surface Changes for the development of Sleeve Drafting Standard)

  • 최해주
    • 한국의류학회지
    • /
    • 제20권5호
    • /
    • pp.852-859
    • /
    • 1996
  • The factors and mechanism of arm surface changes were analyzed by regression analysis for the relationship between changes in arm joint angle and arm surface changes, according to the direction of upper extremity motion. Body surface change patterns among subjects were tested also. Experiments were carried out on 3 female subjects of different body types to examine 26 motions in 4 directions for 4 upper extremity parts. The major conclusions of the study are as follows: 1. The expansion or contraction of arm surface length depends on the direction of upper extremity motion. 2. Arm surface length changes by linear expansion or contraction according to the joint angle of the direction of motion. The mechanism of arm surface changes is represented by a linear relation between arm surface changes and the (actors of the direction of upper extremity motion and arm joint angle. 3. Arm surface length shows the same pattern of body surface changes regardless of body type. A quantitative model of body surface changes at upper extremity should be developed for functional sleeve design.

  • PDF

용접방향에 따른 겹치기 레이저 용접부의 피로강도 (Effects of welding direction and residual stress on the Laser welds)

  • 조성규;장상균;서정;김정오
    • 한국레이저가공학회지
    • /
    • 제5권3호
    • /
    • pp.1-8
    • /
    • 2002
  • Finite element analysis and experiment were peformed to estimate the fatigue strength for the lap joint of laser weld. To consider quantitatively residual stress which effects on the fatigue strength of the lap joint of laser weld, after three dimensional modeling for the longitudinal and transverse direction, residual stress fields in the weldment were calculated using thermo-elastic-plastic finite element analysis, then the equivalent fatigue stress considering the residual stress was obtained. To ensure reliability of calculated fatigue strength, fatigue tests were performed. The calculated and experimental results showed a good agreement. The fatigue strength considering a residual stress was lower than that of without considering a residual stress in the lap joint of laser welding. The fatigue strength in the transverse direction was higher than that of longitudinal direction.

  • PDF

Strength and failure characteristics of the rock-coal combined body with single joint in coal

  • Yin, Da W.;Chen, Shao J.;Chen, Bing;Liu, Xing Q.;Ma, Hong F.
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1113-1124
    • /
    • 2018
  • Geological dynamic hazards during deep coal mining are caused by the failure of a composite system consisting of the rock and coal layers, whereas the joint in coal affects the stability of the composite system. In this paper, the compression test simulations for the rock-coal combined body with single joint in coal were conducted using $PFC^{2D}$ software and especially the effects of joint length and joint angle on strength and failure characteristics in a rock-coal combined body were analyzed. The joint length and joint angle exhibit a deterioration effect on the strength and affect the failure modes. The deterioration effect of joint length of L on the strength can be neglected with a tiny variation at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ between the loading direction and joint direction. While, the deterioration effect of L on strength are relatively large at ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$. And the peak stress and peak strain decrease with the increase of L. Additionally, the deterioration effect of ${\alpha}$ on the strength becomes larger with the increase of L. With the increase of ${\alpha}$, the peak stress and peak strain first decrease and then increase, presenting "V-shaped" curves. And the peak stress and peak strain at ${\alpha}$ of $45^{\circ}$ are the smallest. Moreover, the failure mainly occurs within the coal and no apparent failure is observed for rock. At ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$, the secondary shear cracks generated in or close to the joint tips, cause the structural instability failure of the combined body. Therefore, their failure models present as a shear failure along partial joint plane direction and partially cutting across the coal body or a shear failure along the joint plane direction. However, at ${\alpha}$ of $60^{\circ}$ and L of 10 mm, the "V-shaped" shear cracks cutting across the coal body cause its final failure. While crack nucleations at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ are randomly distributed in the coal, the failure mode shows a V-shaped shear failure cutting across the coal body.

A Study on Joints, developed in Tobong-san Area

  • Kim, Joo-Hwan
    • 동굴
    • /
    • 제65호
    • /
    • pp.1-10
    • /
    • 2004
  • Joint reflects the structure of the earth. And in many cases joints controls the developments of stream directions. In this studying area three joint sets are represented. One is concentrated to the north and the other is deviated $50^{circ}-60^{circ}$ from north to east and west. It is uncertain that the master joint set is a fault line, but the presence of the structural line is evident from the joint strike frequency. The Spearman's $\Upsilon$ between joint patterns and the stream directions is about 0.73.

Z-Quality 강재 적용에 대한 고찰 (A Study on the application for Z-Quality steel)

  • 박성준;하윤석
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2017년도 특별논문집
    • /
    • pp.8-13
    • /
    • 2017
  • The rolled carbon steel plate has anisotropic property in Z-direction(thickness direction). This is induced by cooling rate difference of Z-direction and sulfur which make non-metallic inclusion(MnS) at center line of thickness direction. Z-directional mechanical properties of normal steel plate are not generally specified and it is defined for Z-Quality steel only through tensile test in Z-direction. If Z-quality steel is not applied for cruciform joint, the lamella tearing will be occurred by tensile stress after welding & during operation of the structure. In this research, one equation estimating Z-directional(orthogonal to plate) stress was developed to prevent lamella tearing by welding. This equation deals with plate thickness & joint configuration(eccentricity, angle and curvature). Analyses were done by strain boundary method using sectional FE modeling and FE 3D models are also used for some cases. Designers can predict the possibility of lamella tearing by adequately applying the result and can appropriately minimize the application of Z-quality steel by revising welding design to some extent.

  • PDF

3차원 영상처리를 이용한 암반 사면의 절리 측정에 관한 연구 (Measurement of Rock Slope Joint using 3D Image Processing)

  • 이승호;황영철;심석래;정태영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.854-861
    • /
    • 2005
  • Studied accuracy and practical use possibility of joint measurement that using 3D laser scanner to rock slope. Measured joint of Rock slope and comparison applied 3 dimension laser scanner and clinometer. 3D laser scanning system preserves on computer calculating to 3 dimension coordinate scaning laser to object. and according to laser measurement method of interior, produce correct vector value from charge-coupled device(CCD) or laser reciver and telegram register and time measuring equipment. Create of object x, y, z point coordinates to 3 dimension space of computer. Such 3 dimension point datum (Point Clouds) forms relocate position informations that exist to practical space to computer space. Practical numerical values related between each other. Compared joint distribution and direction that measured by laser scanner and clinometer. By the result, Distribution of joint projected almost equally. Could get more joint datas by measurement of 3 dimension scanner than measured by clinometer. Therefore, There is effect that objectification of rock slope investigation data, shortening of investigation periods, investigation reduction of cost. could know that it is very effective method in joint measuring.

  • PDF

BIOPAK을 이용한 하악의 회전운동에 관한 연구 (A Study on the Mandibular Rotational Movement using Biopak Sysytem)

  • Kyung-Soo Han
    • Journal of Oral Medicine and Pain
    • /
    • 제19권2호
    • /
    • pp.193-203
    • /
    • 1994
  • The author performed this study for investigation of the magnitude of mandibular positional change caused by joint sound during mandibular opening and closing movement. There have been many studies stated mandibular border movement or other functional movement, and there also have been many studies reported clicking sound related to mandibular movement speed, trajectory and clinicl course of temporomandibular disorders(TMDs), but there have not been so many studies stated spatial mandibular position accompanied by joint sound. For this study 46 TM joint from the patients with TMDs were used and they were compared by character and occuring phase of the joint sound. Synchronized data which were amplitude and frequency of joint sound and amount of mandibular positional change were collected through sonopak and BioEGN rotate of Biopak system, respectively. Mandibular position was analyzed for translational and rotational movement change between before and after joint sound. The obtained data were processed with SAS program and summary of this paper were as follows : 1. Mean value of the amount of translational movement in whole joints were 6.0mm in vertical direction, 3.3mm in anteroposterior direction and 0.8mm in lateral direction between before and after joint sound. 2. Mean value of the amount of translational movement in clicking joinnts showed slightly increased tendency than in popping joints. 3. The amount of mandibular change in translational movement during closing phase were more than during opening phase. 4. The amount of mandibular rotational change in whole joints were $1.1^{\circ}$, 1.0mm in frontal plane and $0.9^{\circ}$, and 0.8mm in horizontal plane. 5. The amount of rotational movement were more in clicking joints than in popping joints and were more during closing phase than during opening phase, but statistically significance were showed only in frontal plane.

  • PDF

Joint Estimation of TOA and DOA in IR-UWB System Using Sparse Representation Framework

  • Wang, Fangqiu;Zhang, Xiaofei
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.460-468
    • /
    • 2014
  • This paper addresses the problem of joint time of arrival (TOA) and direction of arrival (DOA) estimation in impulse radio ultra-wideband systems with a two-antenna receiver and links the joint estimation of TOA and DOA to the sparse representation framework. Exploiting this link, an orthogonal matching pursuit algorithm is used for TOA estimation in the two antennas, and then the DOA parameters are estimated via the difference in the TOAs between the two antennas. The proposed algorithm can work well with a single measurement vector and can pair TOA and DOA parameters. Furthermore, it has better parameter-estimation performance than traditional propagator methods, such as, estimation of signal parameters via rotational invariance techniques algorithms matrix pencil algorithms, and other new joint-estimation schemes, with one single snapshot. The simulation results verify the usefulness of the proposed algorithm.