• Title/Summary/Keyword: direction of arrival

Search Result 315, Processing Time 0.026 seconds

Adaptive Hybrid Beamformer Suitable for Fast Fading (고속 페이딩에 적합한 적응 하이브리드 빔형성기)

  • Ahn Jang Hwan;Han Dong Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.49-59
    • /
    • 2005
  • An adaptive hybrid beamformer is proposed to improve the reception performance of the advanced television system committee (ATSC) digital television (DTV) in a mobile environment. Dynamic multipaths and Doppler shifts severely degrade the reception performance of the ATSC DTV receiver. Accordingly, a hybrid beamformer, called a Capon and least mean square (CLMS) beamformer, is presented that uses direction of arrival (DOA) information and the least mean square (LMS) beamforming algorithm. The proposed CLMS algerian efficiently removes dynamic multipaths and compensates for the phase distortion caused by Doppler shifts in mobile receivers. After the CLMS beamformer is operated, the subsequent use of an equalizer removes any residual multipath effects, thereby significantly improving the performance of DTV receivers. The performances of the proposed CLMS, Capon, and LMS beamformersare compared based on computer simulations. In addition, the overall performance of the CLMS beamformer followed by an equalizer is also considered.

Application of deep learning for accurate source localization using sound intensity vector (음향인텐시티 벡터를 통해 정확한 음원 위치 추정을 위한 딥러닝 적용)

  • Iljoo Jeong;In-Jee Jung;Seungchul Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.72-77
    • /
    • 2024
  • Recently, the necessity for sound source localization has grown significantly across various industrial sectors. Among the sound source localization methods, sound intensimetry has the advantage of having high accuracy even with a small microphone array. However, the increase in localization error at high Helmholtz numbers have been pointed out as a limitation of this method. The study proposes a method to compensate for the bias error of the measured sound intensity vector according to the Helmholtz numbers by applying deep learning. The method makes it possible to estimate the accurate direction of arrival of the source by applying a dense layer-based deep learning model that derives compensated sound intensity vectors when inputting the sound intensity vectors measured by a tetrahedral microphone array for the Helmholtz numbers. The model is verified based on simulation data for all sound source directions with 0.1 < kd < 3.0. One can find that the deep learning-based approach expands the measurement frequency range when implementing the sound intensimetry-based sound source localization method, also one can make it applicable to various microphone array sizes.

Fast DOA Estimation Algorithm using Pseudo Covariance Matrix (근사 공분산 행렬을 이용한 빠른 입사각 추정 알고리듬)

  • 김정태;문성훈;한동석;조명제;김정구
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • This paper proposes a fast direction of arrival (DOA) estimation algorithm that can rapidly estimate incidence angles of incoming signals using a pseudo covariance matrix. The conventional subspace DOA estimation methods such as MUSIC (multiple signal classification) algorithms need many sample signals to acquire covariance matrix of input signals. Thus, it is difficult to estimate the DOAs of signals because they cannot perform DOA estimation during receiving sample signals. Also if the D0As of signals are changing rapidly, conventional algorithms cannot estimate incidence angles of signals exactly. The proposed algorithm obtains bearing response and directional spectrum after acquiring pseudo covariance matrix of each snapshot. The incidence angles can be exactly estimated by using the bearing response and directional spectrum. The proposed DOA estimation algorithm uses only concurrent snapshot so as to obtain covariance matrix. Compared to conventional DOA estimation methods. The proposed algorithm has an advantage that can estimate DOA of signal rapidly.

A Computation Reduction Technique of MUSIC Algorithm for Optimal Path Tracking (최적경로 추적을 위한 MUSIC 알고리즘의 계산량 감소 기법)

  • Kim, Yongguk;Park, Hae-Guy;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.4
    • /
    • pp.188-194
    • /
    • 2014
  • V2I(Vehicular to Infrastructure) is a one kind of communication systems which is used between the base stations and mobile objects. In V2I communication system, it is difficult to obtain the desired communication performance. Beamforming technology is to find the optimal path. and it can be improved the communication performance. MUSIC algorithm can be estimated the direction of arrival. The directional vector of received signals and the eigenvector has orthogonal property. MUSIC algorithm uses this property. In V2I communication environment, real time optimal path is changed. By the high computational complexity of the MUSIC algorithm, the optimal path estimation error is generated. In this paper, we propose a method of computation reduction algorithm for MUSIC algorithm.

Analysis of DOA Estimation and Adaptive Beam-forming of MIMO between Linear-circular Array Antennas (선형-원형배열 안테나에 따른 MIMO의 DOA 추정과 적응 빔성형 분석)

  • Yang, Doo-Yeong;Lee, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2777-2784
    • /
    • 2011
  • In this paper, DOA(direction of arrival) of multiple incident signals received from linear array antenna and circular array antenna, which is based on nonparametric estimation algorithm, and adaptive beam-forming algorithm are studied and analyzed. In nonparametric estimation algorithm, we minimize a regularized objective function for finding a estimate of the signal energy as a function of angle, using nonquadratic norm which leads to supper resolution and noise suppression. And then, DOA is estimated by the signal and noise spatial steering vector, and adaptive beam-forming pattern is improved by weight vectors obtained from the spatial vector. Especially, the discrimination ability of DOA and the adaptive beam-forming ability according to antenna array methods and the number of array elements are compared and considered.

Enhancement of Bearing Estimation Performance at Endfire Using Cardioid Inverse Beamforming (좌우분리 역빔형성 기법에 의한 센서 축방향의 방위탐지 성능 향상)

  • 강성현;김의준;윤원식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2001
  • In order to detect the precise port/starboard direction of arrival of target signal in real noisy ocean environments, Inverse beamforming (IBF) algorithm is surveyed theoretically and the detection performances of IBF are analyzed with simulations. Cardioid Inverse beamforming algorithm was proposed for port/starboard discrimination and the performance was studied with simulations. It is shown that IBF has a 3dB array gain advantage over Conventional beamforming (CBF) under ideal conditions. This 3 dB advantage is proven theoretically and illustrated with simulations. The fact that the IBF beamwidth is narrower than the CBF beamwidth by a factor of 0.68 proves the performance of defection and spatial resolution improvement. Comparing the simulation results of Cardioid Inverse beamforming and Conventional Cardioid beamforming, it is shown that Cardioid Inverse beamformer has enhanced performance in minimum detection level, detection accuracy and resolution. Due to the results of moving target bearing detection test in endfire, it is shown that Cardioid Inverse beamformer has better performance, comparing the Conventional Cardioid beamformer.

  • PDF

Signal Estimation of Target Using Modified Bartlett Method of Weight Updating (가중치 갱신의 수정 Bartlett 방법을 이용한 목표물 신호 추정)

  • Lee, Kwan-Hyeong;Joo, Jong-Hyuk
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.330-336
    • /
    • 2016
  • In this paper, we studied for modified bartlett method to estimate desired information signal. Constrained length of bartlett method is assigned as one, and estimate desired information signal to compensate for delay time. Modified bartlett method is an optimum direction-of-arrival (DoA) estimation algorithm to apply delay time compensation to update optimum weight. The optimum weight is used linear constrained minimum variance method(LCMV). Through simulation, we are comparative analysis proposed algorithm and general Bartlett and MUSIC method. In desired signal estimation, condition simulation is an array antenna element numbers 6 or 9 and desired information signals number 3. We show the superior performance of the proposed algorithm relative to the existing method in estimation of desired information signal.

A Tx-Rx Beam Tracking Technique for Cellular Communication Systems with a mmWave Link (밀리미터 웨이브 링크를 갖는 셀룰러 통신 시스템을 위한 송·수신 빔 추적 기법)

  • Kim, Kyu Seok;Lim, Tae Sung;Choi, Joo Hyung;Cho, Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1327-1337
    • /
    • 2014
  • In cellular communication systems employing millimeter wave (mmWave) bands for a link, a large amount of training time and network resources will be required to find a serving BS with the best transmit and receive (Tx-Rx) beam pair if downlink control signals are used. In this paper, a tracking technique for OFDM-based cellular communication systems with a mmWave link, where an analog beamforer is used at the mobile station (MS) and a digital beamformer is used at the BS, is proposed using an uplink signal. A technique to select a serving BS with the best beam pair is described using the uplink preamble sequence based on Zadoff-Chu sequence and a metrics which can be used to identify parameters such as beam ID (BID), MS ID (MID), and direction-of-arrival (DoA). The effectiveness of the proposed technique is verified via simulation with the spatial channel model (SCM) for a moving MS in mmWave cellular systems.

The Study of DoA Estimation in Frequency Domain in Automotive Radar System (차량용 레이더 시스템에서 주파수 영역의 도래각 추정 기법에 관한 연구)

  • Choi, Jung-hwan;Choi, Ji-won;Kim, Seong-cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Convenience and safety are the key words for the automotive driving and various sensor technologies have been studied for enhanced perception of driving environments. In frequency modulated continuous wave (FMCW) radar systems, single antenna is enough for range and velocity detection of multiple targets. Multiple array antenna is needed for estimating direction of arrival(DoA). Using DoA estimation algorithm in time domain as in the conventional systems, it is difficult to distinguish vehicles lie in the same angle. In order to facilitate the enhanced angle estimation, DoA estimation algorithm is applied in frequency domain. In this paper, the method for applying multiple signal classification(MUSIC) algorithm in frequency domain is suggested and the performance is analyzed.

Smart antenna algorithm for CDMA downlink beam-forming (CDMA 하향링크의 빔 성형을 위한 스마트 안테나 알고리즘)

  • Ahn Chijun;Hong Youngmi;Jin Younghwan;Ahn Jaemin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.603-610
    • /
    • 2005
  • Beam-forming method based on the estimated channel information at the base station degrade the performance mismatching directional vector in case of systems which Frequency Division Duplex (FDD) center frequency of uplink and downlink are different. Also blind estimation technique which is to obtain directional vector of reverse link through received signal has disadvantage of hardware complexity increase. To solve these problems, in present paper, a smart antenna algorithm which is to improve the beam-forming complexity increase due to user number by appling the spatial fourier transform to be able to beam- forming toward a wanted direction through adjusting a obtained uplink weight function by estimating Angle-of-Arrival (AoA) to the competable form at the downlink is proposed. The proposed algorithm is integrated to the CDMA downlink transmitter and simulations are performed to confirm the performance as frame error rate at the receiver. As a result, the beam forming effect is confirmed and the performance gain with the proposed algorithm is comparable to ordinary smart antenna system.