• Title/Summary/Keyword: directed-damage design

Search Result 4, Processing Time 0.024 seconds

A Study on the Repair Work for Spindle Key with Damaged Part in Planner Miller by Directed Energy Deposition (DED 방식을 적용한 플래너 밀러의 손상된 스핀들 키 보수 작업에 관한 연구)

  • Lee, Jae-Ho;Song, Jin-Young;Jin, Chul-Kyu;Kim, Chai-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.699-706
    • /
    • 2022
  • In this study, Directed energy deposition (DED) among additive manufacturing is applied to repair damaged spindle key parts of planner miller. The material of the spindle key is SCM415, and the P21 Powder is used. In order to find the optimal deposition conditions for DED equipment, a single-line deposition experiment is conducted to analysis five parameters. The laser power affects the width, and the height is a parameter affected by coaxial gas and powder gas. In addition, laser power, powder feed rate, coaxial gas, and powder gas are parameters that affect dilution. Otimal deposition is that 400 W of laser power, 4.0 g/min of powder feed rate, 6.5 L/min of coaxial gas, 3.0 L/min of powder gas and 4.5 L/min of shield gas. By setting the optimum conditions, a uniform deposition cross section in the form of an ellipse can be obtained. Damage recovery process of spindle key consists of 3D shape design of the base and deposition parts, deposition path creation and deposition process, and post-processing. The hardness of deposited area with P21 powder on the SCM415 spindle key is 336 HV for the surface of the deposition, 260 HV for the boundary area, and 165 HV for the base material.

Mushroom skeleton to create rocking motion in low-rise steel buildings to improve their seismic performance

  • Mahdavi, Vahid;Hosseini, Mahmood;Gharighoran, Alireza
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.639-654
    • /
    • 2018
  • Rocking motion have been used for achieving the 'resilient buildings' against earthquakes in recent studies. Low-rise buildings, unlike the tall ones, because of their small aspect ratio tend to slide rather than move in rocking mode. However, since rocking is more effective in seismic response reduction than sliding, it is desired to create rocking motion in low-rise buildings too. One way for this purpose is making the building's structure rock on its internal bay(s) by reducing the number of bays at the lower part of the building's skeleton, giving it a mushroom form. In this study 'mushroom skeleton' has been used for creating multi-story rocking regular steel buildings with square plan to rock on its one-by-one bay central lowest story. To show if this idea is effective, a set of mushroom buildings have been considered, and their seismic responses have been compared with those of their conventional counterparts, designed based on a conventional code. Also, a set of similar buildings with skeleton stronger than code requirement, to have immediate occupancy (IO) performance level, have been considered for comparison. Seismic responses, obtained by nonlinear time history analyses, using scaled three-dimensional accelerograms of selected earthquakes, show that by using appropriate 'mushroom skeleton' the seismic performance of buildings is upgraded to mostly IO level, while all of the conventional buildings experience collapse prevention (CP) level or beyond. The strong-skeleton buildings mostly present IO performance level as well, however, their base shear and absolute acceleration responses are much higher than the mushroom buildings.

Neuronal injury in AIDS dementia: Potential treatment with NMDA open-channel blockers and nitric oxide-related species

  • Lipton, Stuart A.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.19-29
    • /
    • 1996
  • The neurological manifestations of AIDS include dementia, encountered even in the absence of opportunistic superinfection or malignancy. The AIDS Dementia Complex appears to be associated with several neuropathological abnormalities, including astrogliosis and neuronal injury or loss. How can HIV-1 result in neuronal damage if neurons themselves are only rarely, if ever, infected by the vitus\ulcorner In vitro experiments from several different laboratiories have lent support to the existence of HIV- and immune-related toxins. In one recently defined pathway to neuronal injury, HIV-infected macrophages/microglia as well as macrophages activated by HIV-1 envelope protein gp120 appear to secrete excitants/neurotoxins. These substances may include arachidonic acid, platelet-activating factor, free radicals (NO - and O$_2$), glutamate, quinolinate, cysteine, cytokines (TNF-${\alpha}$, IL1-B, IL-6), and as yet unidentified factors emanating from stimulated macrophages and possibly reactive astrocytes. A final common pathway for newonal suscepubility appears to be operative, similar to that observed in stroke, trauma, epilepsy, and several neurodegenerative diseases, including Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This mechanism involves excessive activation of N-methyl-D-aspartate (NMDA) receptor-operated channels, with resultant excessive influx of Ca$\^$2+/ leading to neuronal damage, and thus offers hope for future pharmacological intervention. This chapter reviews two clinically-tolerated NMDA antagonists, memantine and nitroglycerin; (ⅰ) Memantine is an open-channel blocker of the NMDA-associated ion channel and a close congener of the anti-viral and anti-parkinsonian drug amantadine. Memantine blocks the effects of escalating levels of excitotoxins to a greater degree than lower (piysiological) levels of these excitatory amino acids, thus sparing to some extent normal neuronal function. (ⅱ) Niuoglycerin acts at a redox modulatory site of the NMDA receptor/complex to downregulate its activity. The neuroprotective action of nitroglycerin at this site is mediated by n chemical species related to nitric oxide, but in a higher oxidation state, resulting in transfer of an NO group to a critical cysteine on the NMDA receptor. Because of the clinical safety of these drugs, they have the potential for trials in humans. As the structural basis for redox modulation is further elucidated, it may become possible to design even better redox reactive reagents of chinical value. To this end, redox modulatory sites of NMDA receptors have begun to be characterized at a molecular level using site-directed mutagenesis of recombinant subunits (NMDAR1, NMDAR2A-D). Two types of redox modulation can be distinguished. The first type gives rise to a persistent change in the functional activity of the receptor, and we have identified two cysteine residues on the NMDARI subunit (#744 and #798) that are responsible for this action. A second site, presumably also a cysteine(s) because <1 mM N-ethylmaleimide can block its effect in native neurons, underlies the other, more transient redox action. It appears to be at this, as yet unidentified, site on the NMDA receptor that the NO group acts, at least in recombinant receptors.

  • PDF

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF