• 제목/요약/키워드: direct-reading instruments

검색결과 17건 처리시간 0.022초

고속도로 톨게이트 요금수납원의 작업환경 유해인자 노출평가 (Exposure Assessment of Cashiers at Expressway Tollbooths)

  • 박해동;강준혁;김준범
    • 한국산업보건학회지
    • /
    • 제31권1호
    • /
    • pp.13-21
    • /
    • 2021
  • Objectives: The purpose of this study was to evaluate the exposures of cashiers who work at expressway tollbooths. Methods: We measured temperature(temp.), relative humidity(RH), and contaminants with direct reading instruments at ten expressway toll gate in September 2015. Elemental carbon was collected on the quartz filters and analyzed with an OCEC analyzer. Results: The average levels for temp., RH, carbon monoxide, carbon dioxide, dust(PM10), and black carbon were respectively 24.6~27.8℃, 32.3~65.3%, 0.5~1.2 ppm, 456~559 ppm, 12~111 ㎍/㎥, and 3.1~10.1 ㎍/㎥ at each tollbooth. The concentrations of elemental carbon within the tollbooth(1.8~7.2 ㎍/㎥) were lower than outdoors(2.5~10.0 ㎍/㎥), but exhibited a high correlation(r2=0.855). The exposure levels for carbon monoxide, black carbon, and elemental carbon in the tollbooths were significantly higher than the offices. The concentrations of black carbon and elemental carbon showed a high correlation(r2=0.756). Conclusions: The levels of contaminants were below the occupational exposure limits in the expressway tollbooth. There were ventilation and air conditioning systems in the booths, but it is necessary to maintain and use the systems properly.

탄소나노튜브 성장 실험실에서 CVD 밀폐 여부에 따른 공기 중 나노입자 농도 비교 (Comparison of Airborne Nanoparticle Concentrations between Carbon Nanotubes Growth Laboratories based on Containment of CVD)

  • 하주현;신용철
    • 한국산업보건학회지
    • /
    • 제20권3호
    • /
    • pp.184-191
    • /
    • 2010
  • Although the usage of nanomaterials including carbon nanotubes (CNTs) has increased in various fields, scientific researches on workers' exposures and controls of these materials are very limited. The purpose of this study was to compare the airborne nanoparticles concentrations from two university laboratories conducting experiments of CNTs growth based on containment of thermal chemical vapor deposition (CVD). Airborne nanoparticle concentrations in three metrics (surface area concentration, particle number concentration, and mass concentrations) were measured by task using three direct reading instruments. In a laboratory where CVD was not contained, the surface area concentration, number concentration and mass(PM$_1$) concentration of airborne nanoparticles were 1.5 to 3.5 times higher than those in the other laboratory where CVD was confined. The ratio of PM$_1$ concentration to total suspended particles(TSP) in the laboratory where CVD was not confined was about 4 times higher than that in the other laboratory. This indicates that CVD is a major source of airbone nanoparticles in the CNTs growth laboratories. In conclusion, researchers performing CNTs growth experiments in these laboratories were exposed to airborne nanoparticles levels higher than background levels, and their exposures in a laboratory with the unconfined CVD were higher than those in the other laboratory with the confined CVD. It is recommended that in the CNTs growth laboratories adequate controls including containment of CVD be implemented for minimizing researchers' exposures to airborne nanoparticles.

Work Environments and Exposure to Hazardous Substances in Korean Tire Manufacturing

  • Lee, Na-Roo;Lee, Byung-Kyu;Jeong, Si-Jeong;Yi, Gwang-Yong;Shin, Jung-Ah
    • Safety and Health at Work
    • /
    • 제3권2호
    • /
    • pp.130-139
    • /
    • 2012
  • Objectives: The purpose of this study is to evaluate the tire manufacturing work environments extensively and to identify workers' exposure to hazardous substances in various work processes. Methods: Personal air sampling was conducted to measure polycyclic aromatic hydrocarbons, carbon disulfide, 1,3-butadiene, styrene, methyl isobutyl ketone, methylcyclohexane, formaldehyde, sulfur dioxide, and rubber fume in tire manufacturing plants using the National Institute for Occupational Safety Health Manual of Analytical Methods. Noise, carbon monoxide, and heat stress exposure were evaluated using direct reading instruments. Past concentrations of rubber fume were assessed using regression analysis of total particulate data from 2003 to 2007, after identifying the correlation between the concentration of total particulate and rubber fume. Results: Workers were exposed to rubber fume that exceeded 0.6 mg/$m^3$, the maximum exposure limit of the UK, in curing and production management processes. Forty-seven percent of workers were exposed to noise levels exceeding 85 dBA. Workers in the production management process were exposed to $28.1^{\circ}C$ (wet bulb globe temperature value, WBGT value) even when the outdoor atmosphere was $2.7^{\circ}C$ (WBGT value). Exposures to other substances were below the limit of detection or under a tenth of the threshold limit values given by the American Conference of Governmental Industrial Hygienists. Conclusion: To better classify exposure groups and to improve work environments, examining closely at rubber fume components and temperature as risk indicators in tire manufacturing is recommended.

초등학교 과학 영재와 일반 학생 부모의 과학에 대한 태도 및 과학 활동 지원 정도 분석 연구 (An Analysis of the Attitudes toward Science and Support for Scientific Activities of Scientific Gifted and General Students' Parents in Elementary Schools)

  • 이수진;심봉섭;정진수;강상순;백성혜;이경화;천재순
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제27권3호
    • /
    • pp.296-306
    • /
    • 2008
  • The purpose of this study was to analyze the attitudes toward science and support for scientific activities of the scientific gifted students' parents and the general students' parents in elementary school. The objects of the study were 99 scientific gifted students and their parents and 433 general elementary school students and their parents. The instruments for the measurement of attitudes toward science included three scales: cognition :About value of science, affection toward science and science learning, and cognitive participation in scientific activities. The instrument to measure parents' support for scientific activities included two scales: indirect support and direct support. The results of the study showed that the attitudes toward science of scientific gifted elementary students' parents were more positive than the attitudes toward science of general elementary students' parents. Also the gifted elementary students' parents supported many more scientific activities for their children with various methods than the general elementary students' parents. Their preferring support methods for scientific activities included 16 items including the collection of information about science education, the record of TV science programs, purchase of scientific books, subscription of periodical publication about science, preparing material for scientific activities, and reading scientific book with children.

  • PDF

분사형 소비자 제품 중 나노 물질의 흡입 노출 평가 방법 (Methodologies for Inhalation Exposure Assessment of Engineered Nanomaterial-containing Consumer Spray Products)

  • 박지훈;박미진;윤충식
    • 한국환경보건학회지
    • /
    • 제45권5호
    • /
    • pp.405-425
    • /
    • 2019
  • Objective: This study aimed to review the methodologies for evaluation of consumer spray products containing engineered nanomaterials (ENM), particularly focusing on inhalation exposure. Method: Literature on the evaluation methods for aerosolized ENM exposure from consumer spray products were collected through academic web searching. Common methodologies used in the literature, including research reports and academic articles, were also introduced. Results: The number of ENM-containing products have shown a considerable increase over recent years, from 54 in 2005 to 1,827 in 2018. Currently there is still discussion over the existing regulations with regard to product safety. Analysis of both ENM suspensions in the products and their aerosols is important for risk assessment. Comparison between the phases suggests how the size and concentration of particles change during the spray process. To analyze the ENM suspensions, dynamic light scattering, electron microscopy techniques, and inductively coupled plasma with mass spectrometry were used. In the aerosol monitoring, direct-reading instruments have been used to monitor the aerosols and conventional active sampling is used together to supplement the lack of real-time monitoring. There are also some models for estimating inhalation exposure. These models may be used to estimate mass exposure to nanomaterials contained in consumer products. Conclusion: Although there is no standardized method to evaluate ENM exposure from consumer products, many concerns about ENM have emerged. Every potential measure to reduce exposure to ENM from spray product use should be implemented through a precautionary recognition.

접착제 취급 작업장 내 공기정화 설비를 이용한 휘발성 유기화합물 저감 평가 (Assessment of Volatile Organic Compound Reduction Using an Air Purification Facility in an Adhesive Handling Process)

  • 우재민;김동준;신지훈;민기홍;이채관;양원호
    • 한국환경보건학회지
    • /
    • 제49권2호
    • /
    • pp.78-88
    • /
    • 2023
  • Background: Exposure to volatile organic compounds (VOCs) can have acute and chronic health effects on human beings in general and in working environments. In particular, VOCs are often emitted in large quantities in industrial settings. In such circumstances, there is a need to improve the indoor air quality at workplaces. Objectives: The purposes of this study were to verify the effectiveness of air cleaning devices in workplaces and provide alternative solutions for improving working environments. Methods: Personal exposure and area level of VOCs for workers were evaluated in a car-part adhesive process before and after installing an air cleaning device with a TiO2-coated filter. Passive samplers and direct reading instruments were used to collect and analyze the VOCs, and the removal efficiency and improvement of air quality were evaluated. We also calculated the exposure index (EI) to assess the risk level in the workplace. Results: The removal efficiency for VOCs through the installation of the air cleaning device was approximately 26.9~69.0% as determined by the concentration levels before and after installation. The measured substances did not exceed the exposure limits for the work environment and the EI was less than 1. However, carcinogenic substances such as benzene, formaldehyde, carbon tetrachloride, and trichloroethylene were detected. Conclusions: The application of an air cleaning device can be a solution for controlling the indoor air quality in a workplace, particularly in cases where ventilation systems cannot be installed due to process limitations.

탄소나노튜브 표면 처리 실험실 종사자의 공기중 나노입자 노출에 관한 연구 (Exposure of Laboratory Workers to Airborne Nanoparticles during Acid Treatments on Engineered Carbon Nanotubes)

  • 하주현;신용철;이승철;;김부욱;최병순;강동묵;백남원
    • 한국환경보건학회지
    • /
    • 제36권5호
    • /
    • pp.343-350
    • /
    • 2010
  • This study was performed to investigate laboratory workers' exposures to airborne nanoparticles at a university laboratory where acid treatment experiments were conducted on the surfaces of engineered carbon nanotubes (CNTs). The surface area concentrations, number concentrations, and mass concentrations of airborne nanoparticles were measured at personal breathing zones (PBZs) for various tasks using direct reading instruments. For all three metrics, airborne nanoparticle concentrations during the experiments were higher than background levels measured before and after the experiments for all three metrics. Among the various tasks that were performed as part of these experiments, one task that involved filtering a mixture of acid and CNTs showed the highest concentrations in all three metrics, with concentrations of $116.6\;{\mu}m^2$/cc, 24320 pt/cc, and $9.0\;{\mu}g/m^3$, respectively. Nanoparticle surface area concentrations measured at a representative area fluctuated with those at the PBZs in the laboratory. This result indicates that nanoparticles generated during the experiments were not just limited to the PBZs of the workers but were also present throughout the room, potentially exposing co-located workers. CNTs were detected by a transmission electron microscope in an air sample collected while handling the CNTs. All the tasks were performed inside fume hoods, with the sliding sashes open to their required heights. It was noted that the capture velocities of the fume hoods were much lower than the American National Standards Institute (ANSI)'s recommendation level (0.4 to 0.6 m/s). In conclusion, this study showed that, due to inadequate control, laboratory researchers performing acid treatment experiments on surfaces of CNTs were exposed to airborne nanoparticles generated during the tasks.