• Title/Summary/Keyword: direct transcription method

Search Result 23, Processing Time 0.023 seconds

Effective Exon-Intron Structure Verification of a 1-Pyrroline-5-Carboxylate-Synthetase Gene from Halophytic Leymus chinensis (Trin.) Based on PCR, DNA Sequencing, and Alignment

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Korean Journal of Plant Resources
    • /
    • v.23 no.6
    • /
    • pp.526-534
    • /
    • 2010
  • Genomes of clusters of related eukaryotes are now being sequenced at an increasing rate. In this paper, we developed an accurate, low-cost method for annotation of gene prediction and exon-intron structure. The gene prediction was adapted for delta 1-pyrroline-5-carboxylate-synthetase (p5cs) gene from China wild-type of the halophytic Leymus chinensis (Trin.), naturally adapted to highly-alkali soils. Due to complex adaptive mechanisms in halophytes, more attentions are being paid on the regulatory elements of stress adaptation in halophytes. P5CS encodes delta 1-pyrroline-5-carboxylate-synthetase, a key regulatory enzyme involved in the biosynthesis of proline, that has direct correlation with proline accumulation in vivo and positive relationship with stress tolerance. Using analysis of reverse transcription-polymerase chain reaction (RT-PCR) and PCR, and direct sequencing, 1076 base pairs (bp) of cDNA in length and 2396 bp of genomic DNA in length were obtained from direct sequencing results. Through gene prediction and exon-intron structure verification, the full-length of cDNA sequence was divided into eight parts, with seven parts of intron insertion. The average lengths of determinated coding regions and non-coding regions were 154.17 bp and 188.57 bp, respectively. Nearly all splice sites displayed GT as the donor sites at the 5' end of intron region, and 71.43% displayed AG as the acceptor sites at the 3' end of intron region. We conclude that this method is a cost-effective way for obtaining an experimentally verified genome annotation.

TALENs Construction: Slowly but Surely

  • Hegazy, Wael Abdel Halim;Youns, Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3329-3334
    • /
    • 2016
  • Cancer is thought to be a direct result of transcriptional misregulation. Broad analysis of transcriptional regulatory elements in healthy and cancer cells is needed to understand cancer development. Nucleases regulatory domains are recruited to bind and manipulate a specific genomic locus with high efficacy and specificity. TALENs (transcription activator-like effector nuclease) fused to endonuclease FokI have been used widely to target specific sequences to edit several genes in healthy and cancer cells. This approach is promising to target specific cancer genes and for this purpose it is needed to pack such TALENs into viral vectors. There are some considerations which control the success of this approach, targeting appropriate sequences with efficient construction of TALENs being crucial factors. We face some obstacles in construction of TALENs; in this study we made a modification to the method of Cermk et al 2011 and added one step to make it easier and increase the availability of constructs.

A Study on Earth-Moon Transfer Orbit Design

  • No, Tae-Soo;Lee, Ji-Marn;Jeon, Gyeong-Eon;Lee, Dae-Ro;Kim, Ghang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.106-116
    • /
    • 2012
  • Optimal transfer trajectories based on the planar circular restricted three body problem are designed by using mixed impulsive and continuous thrust. Continuous and dynamic trajectory optimization is reformulated in the form of discrete optimization problem. This is done by the method of direct transcription and collocation. It is then solved by using nonlinear programming software. Two very different transfer trajectories can be obtained by the different combinations of the design parameters. Furthermore, it was found out that all designed trajectories permit a ballistic capture by the Moon's gravity. Finally, the required thrust profiles are presented and they are analyzed in detail.

Immunocapture RT-PCR for Detection of Seed-borne Viruses on Cucurbitaceae Crops (Immunocapture RT-PCR을 이용한 박과작물 종자전염 바이러스의 검출)

  • Lee, Hyok-In;Kim, Jung-Hee;Yea, Mi-Chi
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.121-124
    • /
    • 2010
  • Immunocapture reverse transcription polymerase chain reaction (IC-RT-PCR) was applied to the detection of Cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus (KGMMV), and Zucchini green mottle mosaic virus (ZGMMV) on Cucurbitaceae crops. These seed-borne tobamoviruses were accurately detected from the infected leaves and seeds by IC-RT-PCR. This method was estimated to be about 100 times more sensitive than ELISA, and also it allowed the direct confirmation of ELISA results by using the captured antigens from a completed ELISA microwell. This convenient and reliable method could be used routinely for large-scale field surveys or seed tests of Cucurbitaceae crops.

Enhancement of antimicrobial peptide genes expression in Cactus mutated Bombyx mori cells by CRISPR/Cas9

  • Park, Jong Woo;Yu, Jeong Hee;Kim, Seong-Wan;Kweon, Hae Yong;Choi, Kwang-Ho;Kim, Seong-Ryul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.1
    • /
    • pp.21-28
    • /
    • 2018
  • CRISPR/Cas9 gene editing system is an efficient method to mutation in a sequence specific manner. Here we report the direct transfection of the Cas9 nuclease and gene specific guide RNA can be used in BM-N cell line derived from Bombyx mori ovarian tissue to enfeeble function of endogenous gene in vitro. We have used gene editing system to negative regulation components of major signaling cascade, the Toll pathway, which controls B. mori resistance to microbe infections, such as fungi and gram positive bacteria. We demonstrate that the $I{\kappa}B-like$ protein Cactus may controls the activation of transcription factors such as Rel A and Rel B. The direct transfection of Cas9 nuclease and Cactus-specific guide-RNA complex may be used in BM-N cells to disrupt the function of endogenous genes in vitro. A mutation frequency of 30-40% was observed in the transfected cells, and various mutations caused the target region. Moreover, RT-PCR analysis revealed that Cactus gene was down regulated after these mutations. More importantly, mutation of BmCactus stimulated expression of lysozyme, moricin, and lebocin genes. These results suggest that the CRISPR/Cas9 systems are expected to efficiently induce site-specific mutations and it was possible to produce antimicrobial peptide through the gene editing.

Effect of irradiation on the Porphyromonas gingivalis (방사선조사가 Porphyromonas gingivalis에 미치는 영향)

  • Lee, Chang-Hwan;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.38 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • Purpose: The aim of this study was to observe a direct effect of irradiation on the periodontopathic Porphyromonas gingivalis (P. gingivalis). Materials and Methods: P. gingivalis 2561 was exposed to irradiation with a single absorbed dose of 10, 20, 30, and 40Gy. Changes in viability and antibiotic sensitivity, morphology, transcription, and protein profile of the bacterium after irradiation were examined by pour plating method, disc diffusion method, transmission electron microscopy, RT-PCR, and immunoblot, respectively. Results: Viability of irradiated P. gingivalis drastically reduced as irradiation dose was increased. Irradiated P. gingivalis was found to have become more sensitive to antibiotics as radiation dose was increased. With observation under the transmission electron microscope, the number of morphologically abnormal cells was increased with increasing of irradiation dose. In RT-PCR, decrease in the expression of fimA and sod was observed in irradiated P. gingivalis. In immunoblot, change of profile in irradiated P. gingivalis was found in a number of proteins including 43-kDa fimbrillin. Conclusion: These results suggest that irradiation may affect the cell integrity of P. gingivalis, which is manifested by the change in cell morphology and antibiotic sensitivity, affecting viability of the bacterium.

  • PDF

Fabrication of a Partial Genome Microarray of the Methylotrophic Yeast Hansenula polymorpha: Optimization and Evaluation of Transcript Profiling

  • OH , KWAN-SEOK;KWON, OH-SUK;OH, YUN-WI;SOHN, MIN-JEONG;JUNG, SOON-GEE;KIM, YONG-KYUNG;KIM, MIN-GON;RHEE, SANG-KI;GERD GELLISSEN,;KANG, HYUN-AH
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1239-1248
    • /
    • 2004
  • The methylotrophic yeast Hansenula polymorpha has been extensively studied as a model organism for methanol metabolism and peroxisome biogenesis. Recently, this yeast has also attracted attention as a promising host organism for recombinant protein production. Here, we describe the fabrication and evaluation of a DNA chip spotted with 382 open reading frames (ORFs) of H. polymorpha. Each ORF was PCR-amplified using gene-specific primer sets, of which the forward primers had 5'-aminolink. The PCR products were printed in duplicate onto the aldehyde-coated slide glasses to link only the coding strands to the surface of the slide via covalent coupling between amine and aldehyde groups. With the partial genome DNA chip, we compared efficiency of direct and indirect cDNA target labeling methods, and found that the indirect method, using fluorescent-labeled dendrimers, generated a higher hybridization signal-to-noise ratio than the direct method, using cDNA targets labeled by incorporation of fluorescence-labeled nucIeotides during reverse transcription. In addition, to assess the quality of this DNA chip, we analyzed the expression profiles of H. polymorpha cells grown on different carbon sources, such as glucose and methanol, and also those of cells treated with the superoxide­generating drug, menadione. The profiles obtained showed a high-level induction of a set of ORFs involved in methanol metabolism and oxidative stress response in the presence of methanol and menadione, respectively. The results demonstrate the sensitivity and reliability of our arrays to analyze global gene expression changes of H. polymorpha under defined environmental conditions.

Effect of irradiation on the Streptococcus mutans (방사선조사가 Streptococcus mutans에 미치는 영향)

  • Ahn, Ki-Dong;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.37 no.1
    • /
    • pp.35-43
    • /
    • 2007
  • Purpose : To observe direct effect of irradiation on cariogenic Streptooccus mutans. Materials and Methods : S. mutans GS5 was exposed to irradiation with a single absorbed dose of 10, 20, 30, and 40Gy. Viability and changes in antibiotic sensitivity, morphology, transcription of virulence factors, and protein profile of bacterium after irradiation were examined by pour plate, disc diffusion method, transmission electron microscopy, RT-PCR, and SDS-PAGE, respectively. Results : After irradiation with 10 and 20Gy, viability of S. mutans was reduced. Further increase in irradiation dose, however, did not affect the viability of the remaining cells of S. mutans. Irradiated 5. mutans was found to have become sensitive to antibiotics. In particular, the bacterium irradiated with 40Gy increased its susceptibility to cefotaxime, penicillin, and tetracycline. Under the transmission electron microscope, number of morphologically abnormal cells was increased as the irradiation dose was increased. S. mutans irradiated with 10 Gy revealed a change in the cell wall and cell membrane. As irradiation dose was increased, a higher number of cells showed thickened cell wall and cell membrane and Iysis, and appearance of ghost cells was noticeable. In RT-PCR, no difference was detected in expression of gtfB and spap between cells with and without irradiation of 40Gy. In SDS-PAGE, proteins with higher molecular masses were gradually diminished as irradiation dose was increased. Conclusion : These results suggest that irradiation affects the cell Integrity of S. mutans, as observed by SDS-PAGE, and as manifested by the change in cell morphology, antibiotic sensitivity, and eventually viability of the bacterium.

  • PDF

SNP Discovery in the Leptin Promoter Gene and Association with Meat Quality and Carcass Traits in Korean Cattle

  • Chung, E.R.;Shin, S.C.;Shin, K.H.;Chung, K.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.12
    • /
    • pp.1689-1695
    • /
    • 2008
  • Leptin, the hormone product of the obese gene, is secreted predominately from white adipose tissue and regulates feed intake, energy metabolism and body composition. It has been considered a candidate gene for performance, carcass and meat quality traits in beef cattle. The objective of this study was to identify SNPs in the promoter region of the leptin gene and to evaluate the possible association of the SNP genotypes with carcass and meat quality traits in Korean cattle. We identified a total of 25 SNPs in the promoter region (1,208-3,049 bp upstream from the transcription start site) of the leptin gene, eleven (g.1508C>G, g.1540G>A, g.1545G>A, g.1551C>T, g.1746T>G, g.1798ins(G), g.1932del(T), g.1933del(T), g.1934del(T), g.1993C>T and g.2033C>T) of which have not been reported previously. Their sequences were deposited in GenBank database with accession number DQ202319. Genotyping of the SNPs located at positions g.2418C>G and g.2423G>A within the promoter region was performed by direct sequencing and PCR-SSCP method to investigate the effects of SNP genotypes on carcass and meat quality traits in Korean cattle. The SNP and SSCP genotypes from the two mutations of the leptin promoter were shown to be associated with the BF trait. The average BF value of animals with heterozygous SNP genotype was significantly greater than that of animals with the homozygous SNP genotypes for the g.2418C>G and g.2423G>A SNPs (p<0.05). Analysis of the combined genotype effect in both SNPs showed that animals with the AC SSCP genotype had higher BF value than animals with BB or AA SSCP genotypes (p<0.05). These results suggest that SNP of the leptin promoter region may be useful markers for selection of economic traits in Korean cattle.

Inhibition of Nitric Oxide Production by ladybug extracts(Harmonia axyridis) in LPS-activated BV-2 cells (무당벌레(Harmonia axyridis) 추출물에 의한 BV-2 세포주의 Nitric Oxide 생성 저해 활성)

  • Han Sang-Mi;Lee Sang-Han;Yun Chi-Young;Kang Seok-Woo;Lee Kyung-Gill;Kim Ik-Soo;Yun Eun-Young;Lee Pyeong-Jae;Kim Sun-Yeou;Hwang Jae-Sam
    • Korean journal of applied entomology
    • /
    • v.45 no.1 s.142
    • /
    • pp.31-36
    • /
    • 2006
  • Inflammation in the brain has known to be associated with the development of a various neurologiacal diseases. The hallmark of neuro-inflammation is the activation of microglia, brain macrophage. Pro-inflammatory compounds including nitric oxide(NO) are the main cause of neuro-degenerative disease such as Alzheimer's disease. In the study, we examined whether Harmonia axyridis extracts inhibit the NO production by a direct method using Griess reagent, western blotting and by RT-PCR(Reverse Transcription-Polymerase Chain Reactionin) the gene expression of inducible nitric oxide synthase(iNOS). Distilled water$(H_2O)$ and methanol(MeOH) extracts of H. axyridis inhibited the protein expression of TNF-a(Tumor Necrosis Factor) and IL-6(Interleukin) in LPS (Lipopolysaccharide) stimulated BV-2 cells at the concentration of 100 ng/ml. Incubation of BV-2 cells with the extracts of $H_2O$ of MeOH inhibited the LPS induced NO and iNOS protein. And this inhibition of iNOS protein is concordant with the inhibition of iNOS mRNA expression. These data suggested that H. axyridis extracts may play a crucial role in inhibiting the NO production.