• 제목/요약/키워드: direct torque control method

검색결과 170건 처리시간 0.03초

Torque Ripple Reduction in Direct Torque Control of Five-Phase Induction Motor Using Fuzzy Controller with Optimized Voltage Vector Selection Strategy

  • Shin, Hye Ung;Kang, Seong Yun;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1177-1186
    • /
    • 2017
  • This paper presents a torque ripple reduction method of direct torque control (DTC) using fuzzy controller with optimal selection strategy of voltage vectors in a five-phase induction motor. The conventional DTC method has some drawbacks. First, switching frequency changes according to the hysteresis bands and motor's speed. Second, the torque ripple is rapidly increased in long control period. In order to solve these problems, some/most papers have proposed torque ripple reduction methods by using the optimal duty ratio of the non-zero voltage vector. However, these methods are complicated in accordance with the parameter. If this drawback is eliminated, the torque ripple can be reduced compared with conventional method. In addition, the DTC can be simply controlled without the use of the parameter. Therefore, the proposed algorithm is changing the voltage vector insertion time by using the designed fuzzy controller. Also, the optimized voltage vector selection method is used in accordance with the torque error. Simulation and experimental results show effectiveness of the proposed control algorithm.

토크 리플 저감을 위한 스위치드 릴럭턴스 모터의 직접 토크 제어 (Direct Torque Control of Switched Reluctance Motor for Torque Ripple Reduction)

  • 김윤현;김태형;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권5호
    • /
    • pp.283-294
    • /
    • 2004
  • This paper introduces the new Direct Torque Control(DTC) method based on the estimated torque in Switched Reluctance Motor(SRM) and applies the proposed DTC to SRM for the instantaneous torque ripple reduction. The nonlinear characteristics of SRM is considered in the calculation of the estimated torque and the theory is described in this paper. Current control is one of the kernel elements of torque controller and the performance of the current control should be high for this work. But the conventional PI current control has a weak point in SRM application because of motional EMF. Consequently, this paper makes up for the weakness of PI controller through present of new current controller, that is termed the non-interference current control. The ability of proposed torque and current controller is verified through simulation and experiment.

Neural network based direct torque control for doubly fed induction generator fed wind energy systems

  • Aftab Ahmed Ansari;Giribabu Dyanamina
    • Advances in Computational Design
    • /
    • 제8권3호
    • /
    • pp.237-253
    • /
    • 2023
  • Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.

Torque-Angle-Based Direct Torque Control for Interior Permanent-Magnet Synchronous Motor Drivers in Electric Vehicles

  • Qiu, Xin;Huang, Wenxin;Bu, Feifei
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.964-974
    • /
    • 2013
  • A modified direct torque control (DTC) method based on torque angle is proposed for interior permanent-magnet synchronous motor (IPMSM) drivers used in electric vehicles (EVs). Given the close relationship between torque and torque angle, proper voltage vectors are selected by the proposed DTC method to change the torque angle rapidly and regulate the torque quickly. The amplitude and angle of the voltage vectors are determined by the torque loop and stator flux-linkage loop, respectively, with the help of the position of the stator flux linkage. Furthermore, to satisfy the torque performance request of EVs, the nonlinear dead-time of the invertor caused by parasitic capacitances is considered and compensated to improve steady torque performance. The stable operation region of the IPMSM DTC driver for voltage and current limits is investigated for reliability. The experimental results prove that the proposed DTC has good torque performance with a brief control structure.

Feed-Forward Approach in Stator-Flux-Oriented Direct Torque Control of Induction Motor with Space Vector Pulse-Width Modulation

  • Kizilkaya, Muhterem Ozgur;Gulez, Kayhan
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.994-1003
    • /
    • 2016
  • Two major obstacles in the utilization of electrical vehicles are their price and range. The collaboration of direct torque control (DTC) with induction motor (IM) is preferred for its low cost, easy implementation, and parameter independency. However, in terms of edges, the method has drawbacks, such as variable switching frequency and undesired current harmonic distortion. These drawbacks result in acoustic noise, reduced efficiency, and electromagnetic interference. A feed-forward approach for stator-flux-oriented DTC with space vector pulse-width modulation is presented in in this paper. The outcome of the proposed method is low current harmonic distortion with fixed switching frequency while preserving the torque performance and simple application feature of basic DTC. The method is applicable to existing and forthcoming IM drive systems via software adaptation. The validity of the proposed method is confirmed by simulation and experimental results.

개선된 직접순시토크제어기법을 이용한 SRM의 토크리플 저감 (Torque Reduction of SRM Using An Advanced Direct Instantaneous Torque Control Scheme)

  • ;김태형;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.148-149
    • /
    • 2007
  • In this paper, an advanced torque control scheme of SRM using DITC(Direct Instantaneous Torque Control) and PWM(pulse width modulation) is investigated. The proposed DITC-PWM regulates a duty ratio of the phase switch according to the torque error and simple control rules of DITC without any hysteresis bandwidth. The proposed control method is verified by the simulations and experimental results.

  • PDF

압력예측기법과 직접순시토크제어기법을 통한 유압펌프용 SRM의 압력제어구동 (Pressure Control of Hydraulic Pump using SR Drive with Pressure Predict and Direct Torque Control Method)

  • 이동희;석승훈;양가령;안진우
    • 전력전자학회논문지
    • /
    • 제13권3호
    • /
    • pp.171-178
    • /
    • 2008
  • 본 논문에서는 압력예측기법과 직접 순시토크 제어기법을 통한 유압펌프용 SRM의 압력제어 구동시스템을 제안하였다. 일반적으로 유압 펌프 시스템은 유압센서의 응답성으로 인하여 제어시스템의 시지연이 비교적 길어지게 되며, 이러한 시간지연은 PI 또는 PID 제어 구조에서 장시간의 진동과 불안정화를 만들기 쉽다. 본 논문에서는 시간 지연문제를 해결하고 리플이 없는 압력제어를 위하여 스미스 예측기(simth predictor)를 통한 지연보상과 직접 순시토크제어기법(Direct Instantaneous Torque, 이하 DITC)을 적용하였다. 제안된 제어 방식은 펌프와 센서간의 기구적 문제에 의한 지연문제 해결과 안정성을 확보하고, 펌프 압력제어의 동특성을 향상시키며 전류(轉流, commutation) 구간에서 균일한 토크를 발생시켜 토크 리플을 억제하기 위함이다. 제안된 제어방식은 시뮬레이션과 실험을 통하여 효용성을 검증하였다.

일정한 토크 평균치를 가지는 유도전동기 직접토크제어기법 (Direct Torque Control Method of Induction Machine with Constant Average Torque)

  • 김정옥;조내수;최병태;김우현;임성운;권우현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.31-34
    • /
    • 2003
  • There are several types of switching table for selection voltage vector in direct torque control of induction motor. In general, two-quadrant and four-quadrant operation switching table are used mostly. Two-quadrant operation has an advantage that reduced the torque ripples in comparison with four-quadrant operation, but it has the defect that is not constant average torque. Because the torque increasing slope size by non-zero voltage vector is different from the torque decreasing slope size by zero voltage vector as speed region. The main objective of this study is to maintain constant average torque using two-quadrant operation switching table. In proposed method, the torque increasing slope or decreasing slope are calculated before selected voltage vector is applied. Then, it is applied to zero voltage vector or non-zero voltage vector until the torque increasing slope and decreasing slope are equal. In total magnitude. Therefore it becomes to maintain average torque at whole operation speed. The validity of the proposed method is proven by simulated and experimental results.

  • PDF

An Enhanced Finite-Settling-Step Direct Torque and Flux Control (FSS-DTFC) for IPMSM Drives

  • Kim, Sehwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1367-1374
    • /
    • 2016
  • This paper presents a discrete-time version of voltage and current limited operation using an enhanced direct torque and flux control method for interior permanent magnet synchronous motor (IPMSM) drives. A command voltage vector for airgap torque and stator flux regulation can be uniquely determined by the finite-settling-step direct torque and flux control (FSS-DTFC) algorithm under physical constraints. The proposed command voltage vector trajectories can be developed to achieve the maximum inverter voltage utilization for the discrete-time current limit (DTCL)-based FSS-DTFC. The algorithm can produce adequate results over a number of the potential secondary upsets found in the steady-state current limit (SSCL)-based DTFC. The fast changes in the torque and stator flux linkage improve the dynamic responses significantly over a wide constant-power operating region. The control strategy was evaluated on a 900W IPMSM in both simulations and experiments.

고정자 자속의 해석을 통한 직접 토크 제어 SPMSM의 최대 토크 운전 (Maximum Torque Operating Strategy based on Stator Flux Analysis for Direct Torque and Flux Control of a SPMSM)

  • 김상훈
    • 전력전자학회논문지
    • /
    • 제19권5호
    • /
    • pp.463-469
    • /
    • 2014
  • This paper proposes a maximum torque operation strategy for the direct torque control of a surface-mounted permanent-magnet synchronous motor (SPMSM). The proposed method analyzes the available operation region of the stator flux of the SPMSM under voltage and current constraints. Based on this analysis, the optimal stator flux trajectory that yields the maximum torque is obtained across the entire operation region, including constant torque and constant power regions. The proposed strategy is also applicable in the flux-weakening region II operation of the SPMSM, which has no speed limit. The validity of the proposed method is verified through experiments conducted on an 800 W SPMSM drive system.