• Title/Summary/Keyword: direct test

Search Result 3,323, Processing Time 0.04 seconds

Effect of water content on near-pile silt deformation during pile driving using PIV technology

  • Jiang, Tong;Wang, Lijin;Zhang, Junran;Jia, Hang;Pan, Jishun
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.139-149
    • /
    • 2020
  • Piles are widely used in structural foundations of engineering projects. However, the deformation of the soil around the pile caused by driving process has an adverse effect on adjacent existing underground buildings. Many previous studies have addressed related problems in sand and saturated clay. Nevertheless, the failure mechanism of pile driving in unsaturated soil remains scarcely reported, and this issue needs to be studied. In this study, a modeling test system based on particle image velocimetry (PIV) was developed for studying deformation characteristics of pile driving in unsaturated silt with different water contents. Meanwhile, a series of direct shear tests and soil-water characteristic curve (SWCC) tests also were conducted. The test results show that the displacement field shows an apparent squeezing effect under the pile end. The installation pressure and displacement field characteristics are sensitive to the water content. The installation pressure is the largest and the total displacement field is the smallest, for specimens compacted at water content of 11.5%. These observations can be reasonably interpreted according to the relevant unsaturated silt theory derived from SWCC tests and direct shear tests. The variation characteristics of the soil displacement field reflect the macroscopic mechanical properties of the soil around the pile.

Covariance Structure Analysis of Science Process Skills Affected by Students' Cognitive and Affective Characteristics in Elementary and Middle School (초 . 중학생들의 과학탐구능력에 미치는 인지적, 정의적 특성에 대한 공변량 구조분석)

  • Lim, Cheong-Whan;Kim, Seung-Wha;Yang, Il-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • The purpose of this study was to analyze the structural model of causal effects of students' variables on science process skills. Student characteristics investigated in the study included attitude related to the science, logical thinking ability, scientific experiences, cognitive style. Covariance structural modeling procedures were used to test causal inferences about hypothesized relationships. The sample consisted of 319 6th grade students and 321 8th grade students in Seoul City, Korea. Five instruments were used in the study, TSPS(test of science process skills), GALT(group assessment of logical thinking), CEFT(children embedded figures test), questionnaire of attitude related to the science, questionnaire of scientific experience. For statistical analysis, the study adopted the structural equation modeling with LlSREL, a computer statistical program developed by J reskog and S rbom. Major findings of the study are as follows:1) Logical thinking ability has a most strong direct effect on science process skills. 2) The structural coefficient of scientific experience influence on attitude related to the science has the greatest direct one than the others in the covariance structural model. According to the results of this study, it is very importance that various scientific experiences, particularly hands-on activity, should be offer to students to improve science process skills. Also, understanding the relationships of student variable to science process skills will be helpful to decision making on the part of curriculum developers, science teachers and researchers.

  • PDF

An Investigation of Fluid Mixing with Direct Vessel Injection (직접용기주입에 따른 유체혼합에 관한 연구)

  • Cha, Jong-Hee;Jun, Hyung-Gil
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.63-77
    • /
    • 1994
  • The objective of this work is to investigate fluid mixing phenomena related to pressurized thermal shock(PTS) in a pressurized water reactor(PWR) vessel downcomer during transient cooldown with direct vessel injection(DVI) using test models. The test model designs were based on ABB Combustion Engineering(C-E) System 80+ reactor geometry. A cold leg small break loss-of-coolant accident(LOCA) md a main steam line teak were selected as the potential PTS events for the C-E System 80+. This work consist of two parts. The first part provides the visualization tests of the fluid mixing between DVI fluid and existing coolant in the downcomer region, and the second part is to compare the results of thermal mixing tests with DVI in the other test model. Row visualization tests with DVI have clarified the physical interaction between DVI fluid and primary coolant during transient cooldown. A significant temperature drop was observed in the downcomer during the tests of a small break LOCA Measured transient temperature profiles agree well with the predictions by the REMIX code for a small break LOCA and with the calculations by the COMMIX-1B code for a steam line break event.

  • PDF

The Physical and Shear Strength Properties of the Weathered Limestone Soils in Changsung and Hwasun Area of Chonnam Province, Korea (전라남도 장성과 화순에 분포하는 석회암풍화토의 물성 및 전단 특성)

  • 김해경
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.335-344
    • /
    • 2003
  • This study is focused to the physical and shear strength properties of the weathered limestone soils distributed in Changsung and Hwasun area, Chonnam province. Disturbed soil was used as soil samples. To grasp the physical and shear strength properties of weathered limestone soil, specific gravity test, atterberg limit, grain size distribution and direct shear test were conducted in the laboratory. The physical and shear strength properties of the weathered limestone soil in the study areas are as follows. The range of specific gravity (Gs) is 2.78 to 2.80, liquid limits (LL) 37 to 38 (%), plasticity index (PI) 13.7 to 15.4, and soil classification CL. The range of strength parameters by direct shear test (vd, $1.5t/\textrm{m}^3$) is 3.07 to 4.4 ($t/\textrm{m}^2$) of cohesion and 34.8 to $42.4^{\circ}$ of internal friction angle in unsaturated soils. As a result of comparing with the weathered granite soils (Yang, 1997: Mun, 1998: Park, 1998), it is considered that physical properties of the weathered limestone soils in this study are different from the weathered granite soils. On the other hand, internal friction angle of shear parameters is found to be similar.

A Case of Hemolytic Disease of a Newborn by an Anti-$Di^a$ Antibody Treated with Intravenous Immunoglobulin (정맥용 면역글로불린 투여로 호전된 항-$Di^a$ 항체에 의한 신생아 용혈성 질환 1예)

  • Lee, Chang Eon;Park, Su Jin;Kim, Won Duck
    • Journal of Yeungnam Medical Science
    • /
    • v.30 no.1
    • /
    • pp.21-24
    • /
    • 2013
  • Hemolytic disease in a newborn that causes early jaundice is common. It is often due to the Rh (D) and ABO incompatibility, but rarely due to unexpected antibodies. Among these unexpected antibodies, the anti-$Di^a$Dia antibody rarely occurs. The anti-$Di^a$ antibody was observed in the serum and red-cell eluate of an infant, and in the serum of his mother. The frequency of the appearance of the $Di^a$ antigen in the Korean population is estimated to be 6.4-14.5%. This paper reports a case of hemolytic disease in a newborn associated with the anti-$Di^a$ antibody. A full-term male infant was transferred to the authors' hospital due to hyperbilirubinemia the day after his birth. The laboratory data indicated a hemoglobin value of 11.6 g/dL, a reticulocyte count of 10.6%, a total bilirubin count of 14.4 mg/dL, a direct bilirubin count of 0.6 mg/dL, and a positive result in the direct Coombs' test. Due to the identification of an irregular antibody from the maternal serum, an anti-$Di^a$ antibody was detected, which was also found in the eluate made from the infant's blood. The infant had been treated with phototherapy and intravenous immunoglobulin since the second day after his birth and was discharged due to an improved condition without exchange transfusion. Therefore, in cases of iso-immune hemolytic disease in a newborn within 24 hours from birth who had a negative result in an antibody screening test, the conduct of an anti-$Di^a$ antibody identification test is recommended due to the suspicion of an anti-$Di^a$ antigen, followed by early administration of intravenous immunoglobulin.

Studies on development of ELISA Kits for T-2 toxin (T-2 독소의 측정을 위한 ELISA Kits의 개발에 관한 연구)

  • Yoon, Hwa-joong;Kim, Taejong;Lee, Sung-yun
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.613-618
    • /
    • 1997
  • Direct competitive enzyme linked immunosorbent assay(ELISA) with monoclonal antibodies have been studied for quantitative determination of T-2 toxin from the mold corn. The T-2HS, T-2HS-BSA, T-2HS-HRP and monoclonal antibodies against T-2 toxin produced in the studies were qualified for quantitative ELISA test of T-2 toxin. The mean recovery rate from ground com spiked T-2 toxin was 83%. The meaning range of the T-2 test was 60ng to $2{\mu}g$. According to the recovery results with the com spiked T-2, the tests proved to be suitable in the screening of the moldy feed samples for the presence of T-2 toxin and will be able to become the basis of the ELISA test for the quantitative screening kits of T-2 toxin.

  • PDF

Model Tests and GIMP (Generalized Interpolation Material Point Method) Simulations of Ground Cave-ins by Strength Reduction due to Saturation (불포화 강도 유실에 의한 지반함몰 현상의 모형 실험 재현 및 일반 보간 재료점법을 활용한 수치적 모사)

  • Lee, Minho;Woo, Sang Inn;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.93-105
    • /
    • 2017
  • This study presents direct shear tests, model tests, and numerical simulations to assess the effect of reduction of soil strength because of saturation during formation of ground cave-in caused by damaged sewer pipe lines. The direct shear test results show that the saturation affects the cohesion of soil significantly although it does not influence the friction angle of soil. To experimentally reproduce ground cave-in, the model tests were performed. As ground cave-ins were accompanied with extreme deformation, conventional finite element method has difficulty in simulating them. The present study relies on generalized interpolation material point method, which is one of meshless methods. Although there are differences between the model test and numerical simulation caused by boundary conditions, incomplete saturation, and exclusion of groundwater flow, similar ground deformation characteristics are observed both in the model test and numerical simulation.

Numerical Modeling of Soil Liquefaction at Slope Site (사면에서 발생하는 액상화 수치해석)

  • Park, Sungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.133-143
    • /
    • 2006
  • A fully coupled effective stress dynamic analysis procedure for modeling seismic liquefaction on slope is presented. An elasto-plastic formulation is used for the constitutive model UBCSAND in which the yield loci are radial lines of constant stress ratio and the flow rule is non-associated. This is incorporated into the 2D version of Fast Lagrangian Analysis of Continua (FLAC) by modifying the existing Mohr-Coulomb model. This numerical procedure is used to simulate centrifuge test data from the Rensselaer Polytechnic Institute (RPI). UBCSAND is first calibrated to cyclic direct simple shear tests performed on Nevada sand. Both pre- and post-liquefaction behaviour is captured. The centrifuge test is then modeled and the predicted accelerations, excess porewater pressures, and displacements are compared with the measurements. The results are shown to be in general agreement. The procedure is currently being used in the design of liquefaction remediation measures for a number of dam, bridge, tunnel, and pipeline projects in Western Canada.

  • PDF

An Experiment on Bond Behaviours of Reinforcements Embedded in Geopolymer Concrete Using Direct Pull-out Test (직접 인발 시험을 이용한 지오폴리머 콘크리트의 부착 특성 실험)

  • Kim, Jee-Sang;Park, Jong-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.454-462
    • /
    • 2016
  • Geopolymer concrete is a new class of construction materials that has emerged as an alternative to ordinary Portland cement concrete to reduce the emission of $CO_2$ in the production of concrete. Many researches have been carried out on material developments of geopolymer concrete, however a few studies have been reported on the structural use of them. This paper presents an experiment on the bond behaviors of reinforcements embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strength levels of geopolymer concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16 and 25 mm, are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure the bond strength and slips between concrete and reinforcements. As the compressive strength levels of geopolymer concrete increase, the bond strength between geopolymer concrete and reinforcement increase. The bond strengths decrease as the diameters of reinforcements increase, which is similar in normal concrete. Also, an estimation equation for the basic development length of reinforcement embedded in geopolymer concrete is proposed based on the experimental results in this study.

A Compaction Control Procedure of Railway Trackbed Fills Using Elastic Waves (탄성파를 이용한 철도노반의 다짐관리 방안)

  • Park, Chul-Soo;Park, In-Beom;Oh, Sang-Hoon;Kim, Hak-Sung;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1427-1439
    • /
    • 2008
  • The quality of track-bed fills of railways has been controlled by field measurements of density (${\gamma}_d$) and the results of plate-load tests. The control measures are compatible with the design procedures whose design parameter is $k_{30}$ for both ordinary-speed railways and high-speed railways. However, one of fatal flaws of the design procedures is that there are no simple laboratory measurement procedures for the design parameters ($k_{30}$ or, $E_{v2}$ and $E_{v2}/E_{v1}$) in design stage. A new quality control procedure, in parallel with the advent of the new design procedure, is being proposed. This procedure is based upon P-wave velocity involving consistently the evaluation of design parameters in design stage and the field measurements during construction. The key concept of the procedure is that the target value for field compaction control is the P-wave velocity determined at OMC using modified compaction test, and direct-arrival method is used for the field measurements during construction. The procedure was verified at a test site and the p-wave velocity turned out to be an excellent control measure. The specifications for the control also include field compaction water content of $OMC{\pm}2%$ as well as the p-wave velocity.

  • PDF