• Title/Summary/Keyword: direct test

Search Result 3,324, Processing Time 0.028 seconds

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

Effect of Aspect Ratio in Direct Tensile Strength of Concrete (콘크리트 직접인장강도의 세장비 효과)

  • Hong, Geon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.246-253
    • /
    • 2003
  • Although concrete members are not normally designed to resist direct tension, the knowledge of tensile strength is of value in estimating the cracking load. In general, there are three types of test method for tensile strength ; direct tension test, flexural tension test, and splitting tension test. Though direct tensile strength represents the real tensile strength of concrete, direct tension tests are seldom carried out, mainly because it is very difficult to applicate a pure tension force. The purpose of this paper is to investigate the test methods, effect of aspect ratio, and the size effect on the direct tensile strength. Direct tension test, using bonded end plates, follows RILEM and U.S.Bureau of Reclamation. And other test methods follow ASTM provisions. Four kinds of aspect ratio and two kinds of size effect are tested. Same variables are tested by direct tension test and splitting tension test for comparison between the two test methods. Test results show that direct tensile strength of concrete is more affected by aspect ratio and size than other kinds of strength.

Air-Water Test on the Direct ECC Bypass During LBLOCA Reflood Phase with DVI : UPTF Test 21-D Counterpart Test

  • Yun, Byong-Jo;Kwon, Tae-Soon;Song, Chul-Hwa;Euh, Dong-Jin;Park, Jong-Kyun;Cho, Hyoung-Kyu;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.315-326
    • /
    • 2001
  • Direct ECC bypass phenomena that occur in a reactor vessel downcomer with a Direct Vessel Injection (DVI) system during the reflood phase of a Large Break Loss-of-Coolant Accident (LBLOCA) are experimentally investigated using a transparent l/7.5 scaled down test facility of the Upper Plenum Test Facility (UPTF). A series of separate effect tests are peformed in order to investigate the mechanisms of direct ECC bypass and to find out its scaling parameters. Various flow regimes and phasic distribution in downcomer are identified and mapped, and the fraction of direct ECC bypass is measured under a wide range of air and water injection conditions. From the counterpart test of the UPTF Test 21-D, the dimensionless gas velocity ( $j^{*}$$_{g,eff}$) is derived experimentally, which is believed to be a major scaling parameter for the fraction of direct ECC bypass. And it is found out that the direct ECC bypass is greatly affected by the spreading width of ECC water film and the geometric configuration of the downcomer.r.

  • PDF

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

The Study on the Cost Analysis Based on ABC System in Clinical Laboratory (활동기준원가시스템을 이용한 임상병리과 검사 서비스 원가 분석)

  • 전기홍;김보경;안태식;조우현
    • Health Policy and Management
    • /
    • v.8 no.2
    • /
    • pp.88-109
    • /
    • 1998
  • The main purpose of this study is to compare the traditional cost system and ABC(Activity Based Cost) system of clinical laboratory department in a hospital. The study subject was 296 services in clinical laboratory from March, 1997 to August, 1997. In a new costing system, cost for a lab test consist of direct cost element, activity based cost element, and allocated common cost element. In a traditional cost system, cost elements included direct cost element and indirect cost allocated based on test volumes The major findings of this research were as follows. 1. In the application of ABC system, total cost was analyzed as follows. Direct cost was 39.3% of total cost. Activity cost and allocation were 20.9% and 39.8%, respectively. The results of analysis to use traditional cost system were as follows. Direct cost was 39.3% and it was as same as the result of direct cost of ABC system. Indirect cost was 60.7%. 2. Activities of clinical laboratory of subject hospital were registration, pre-test operation, test, test result handling, delivery, culture, post-test operation, technical support, management support, and educational support. 3. The differences of the case of higher number of test case being carried out, the cost of ABC system was lower than the cost of traditional cost system. Otherwise in the case of lower number of test case being carried out, the rests have not been appropriately evaluated, and effective management were needed in clinical laboratory.

  • PDF

The discrete element method simulation and experimental study of determining the mode I stress-intensity factor

  • Shemirani, Alireza Bagher;Haeri, Hadi;Sarfarazi, Vahab;Akbarpour, Abbas;Babanouri, Nima
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.379-386
    • /
    • 2018
  • The present study addresses the direct and indirect methods of determining the mode-I fracture toughness of concrete using experimental tests and particle flow code. The direct method used is compaction tensile test and the indirect methods are notched Brazilian disc test, semi-circular bend specimen test, and hollow center cracked disc. The experiments were carried out to determine which indirect method yields the fracture toughness closer to the one obtained by the direct method. In the numerical analysis, the PFC model was first calibrated with respect to the data obtained from the Brazilian laboratory test. The crack paths observed in the simulated tests were in reasonable accordance with experimental results. The discrete element simulations demonstrated that the macro fractures in the models are caused by microscopic tensile breakages on large numbers of bonded particles. The mode-I fracture toughness in the direct tensile test was smaller than the indirect testing results. The fracture toughness obtained from the SCB test was closer to the direct test results. Hence, the semi-circular bend test is recommended as a proper experiment for determination of mode-I fracture toughness of concrete in the absence of direct tests.

Comparison of Shear Strengths of Crushed Rock Determined by Large Triaxial Test and Direct Shear Test (대형삼축압축시험 및 대형직접전단시험에 의한 사석재료의 전단강도 평가)

  • 신동훈;안태봉;이경필;이한출
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.259-264
    • /
    • 2002
  • In this study the shear strengths of a poorly grad ed rock material(d/sub max/≤50.8mm, C/sub u/=1.86) were determined by large direct shear test and large triaxial test. The obtained stress-strain curves by the above large shear tests for the rock materials are similar to the loose sand's or normally consolidated clay's curve, in which the peak strength does not appear obviously. And for the uniformly graded rock material the shear strength by large direct shear test may be overestimated around 1.54∼1.70 times that of large triaxial test.

  • PDF

An Experimental Study on the Evaluation of Shear Strength of Weathered Soil Containing Coarse Particles (굵은 입자가 포함된 풍화토의 전단강도 평가에 대한 실험연구)

  • Joon-Seok Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.169-176
    • /
    • 2024
  • Purpose: In this paper, an experimental study was conducted to analyze the difference in shear strength caused by the problem of excluding coarse particles due to the size of the test specimen in the direct shear test. Method: A large-scale direct shear test was conducted on three weathered soils containing coarse aggregates with a maximum diameter of 50mm. In addition, a small-scale direct shear test was performed using a sample with a maximum diameter of 5 mm, excluding coarse aggregates. Result: In the case of the small-scale direct shear test, compared to the results of the large-scale direct shear test containing large particles, the internal friction angle was about 2.3% smaller, and there was no significant difference. In terms of cohesion, compared to the large-scale direct shear test, the small-scale direct shear test derived about 80.3% smaller value, showing a relatively large difference. Conclusion: In the large-scale direct shear test, it was analyzed that the coarse particles had a greater impact on the cohesion than the internal friction angle. Therefore, granite weathered clay containing coarse particles is judged to have the same shear strength as the cohesive force that is not affected by vertical stress. In this study, it was analyzed that the small-scale direct shear test, which excludes the coarse particles that are commonly used, provides results on the safety side by excluding the effect of coarse particles.

A Study on the Characteristics of Shear Strength in Unsaturated Cohesive Soils (불포화 점성토의 전단강도 특성에 관한 연구)

  • 유범식;조덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.3
    • /
    • pp.96-104
    • /
    • 1981
  • In order to investigate the characteristics of the shear strength of the unsaturated cohesive soils which has mean characters of sand and clay widely used for banking, I selected soil samples from An-sung district and, against it, performed direct shear test and unconfined compression test changing grain size, compaction energy and moisture content and also performed triaxial compression test under optimum moisture content. The results are as follows; 1.As the passing percent of the No. 200 sieve increased from 23.6% to 56.1%, cohesion increased from 0. 202kg/cm2 to 0. 398kg/cm2 under the direct shear test and from 0.38 kg/cm2 to 1. 05kg/cm2 under the tria4al compression test, internal friction angle decreased from 44. 78$^{\circ}$ to 34. 34$^{\circ}$ under the direct shear test and from 31. 88$^{\circ}$ to 13. 31$^{\circ}$ under the triaxial compression test. 2.Cohesion showed it's maximum value around OMC and internal friction angle showed a tendency to increase according to the decrease of water content but it's increasing ratio was relatively slow. 3.Decreasing ratio of cohesion and internal friction angle was relatively sensitive according to the decrease of compaction energy. 4.The smaller of the vertical stress and the coarser of the grain size of samples, changing of the volume showed a tendency to increase and as the increase of water content, the shear displacement (dh) at failure shear stress ($\tau$f) showed maximum and the $\tau$f-dh curve was gentle. 5.To synthesize the results of the direct shear test and the triaxial compression test, cohesion showed higher under the triaxial compression test and internal friction angle showed a tendeney to appear higher under the direct shear test. It seems that we can get correspondent results by removing the side friction of mold with soils and adjusting the vertical stress and shearing speed under the direct shear test.

  • PDF

Development of an In Situ Direct Shear Test Apparatus and Its Field Application (현장직접전단시험기의 개발 및 현장적용에 관한 연구)

  • Kim, Yong-Phil;Lee, Young-Kyun;Lee, Sung-Kook;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.181-191
    • /
    • 2011
  • It is very difficult to prepare a lab. test specimen from weak rock masses affected by faults, highly fractured zone or weathered zone. In conventional method of in situ direct shear test a rock block is sheared inside galleries, where reactions for the hydraulic jacks are available. A new in situ direct shear test apparatus has been developed in this study to perform the test inside galleries as well as open pit conditions. The apparatus is composed of normal and shear reaction plates including load transfer plates, hydraulic cylinder systems, load cells, multistage shear boxes with fixing devices, and needle rollers. Maximum size of the test block is $400{\times}400{\times}460$ mm, and procedures of the test block preparation has been suggested. To explore the field applicability of in situ direct shear test apparatus, proper test block site was investigated by extensive geological field survey. In situ direct shear test has been successful in producing most of information related to strength and deformability of the weak rock.