• Title/Summary/Keyword: direct tensile fatigue

Search Result 11, Processing Time 0.034 seconds

A Study on the Characteristics of Direct Tensile Fatigue of the Domestic PS Bar at High Stress Range (국산 PS 강봉의 고응력범위에서의 직접 인장피로 특성)

  • Yoo, Sung Won;Suh, Jeong In
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.137-145
    • /
    • 2003
  • In this study, direct tensile fatigue tests of the PS bar were performed in terms of diameter, minimum stress level, and maximum stress level. In the static test, the stress - strain curve and ultimate streng th of the PS bar were determined. Results of the fatigue test indicate that the diameter of the PS bar was not influenced by fatigue life. Minimum stress also had quite an influence on the fatigue of the PS bar. Thus, the fatigue characteristic equation was proposed in terms of stress range and minimum stress through statistical process. Strains on specimen that loaded direct tension were measured in the fatigue test, with the secant modulus of elasticity calculated from measured strains. The strain development consisted of three different stages, i.e., rapid increases during the initial fatigue life, uniform increases during the middle stage, and rapid increases until failure. The secant modulus of elasticity decreased during the fatigue life with increasing strain. However, stress level seemed to have no influence on the secant modulus of elasticity.

Prediction of life of SAPH45 steel with measured fracture time and strength (인장파단시간 및 응력측정에 의한 SAPH45의 수명예측)

  • 박종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.269-273
    • /
    • 1998
  • The failure of material structures or mechanical system is considered as a direct or indirect result of fatigue. In the design of mechanical structure for estimating of reliability, the prediction of failure life is the most important failure mode to be considered. However, because of a complicated behavior of fatigue in mechanical structure, the analysis of fatigue is in need of much researches on life prediction. This document presents a prediction of fatigue life of the SAPH45 steel, which is extensively for vehicle frame. The method using lethargy coefficient and stress distribution factor at pediction of fatigue life based on the consideration of the failure characteristics from the tensile test should be provided in this study.

  • PDF

Comparative Study on the Bond Strength between Direct Tensile Test and Indirect Tensile Test for Bonded Concrete Overlay (직접인장 및 간접인장 실험방법에 따른 접착식 콘크리트 덧씌우기의 부착강도 비교 고찰)

  • Kim, Young Kyu;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1153-1163
    • /
    • 2013
  • Bonded concrete overlay is a favorable maintenance method since the material properties are similar to existing concrete pavements. In addition, bonded concrete overlay has advantage of structural performance based on being bonded together, both for the overlay layer and the existing pavement which perform as one monolithic layer. Therefore, it is important to have a suitable bond strength criteria for long term performance of bonded concrete overlay. This study aimed to investigate the affecting of bond strength on various bond characteristics, and to compare the bond strength between direct tensile test and indirect tensile test due to various conditions such as overlay materials, compressive and flexure strength of existing pavement, and deterioration status of existing pavement. As a result of this study, bond strength occurred by both of direct and indirect tensile test due to monotonic load is highly correlated such as coefficient of determination of 0.75 and P-value of 0.002. However, bond strength by indirect tensile test was relatively higher than bond strength by direct tensile test. It was known that correlation between direct and indirect tensile test was possible to use the characteristics analysis of bond fatigue behavior based on bond strength due to cyclic load which can simulate real field behavior of bonded concrete overlay.

The Correlation between Fatigue Fracture Crack Surface Friction and Crack Closure Effect in Crack Growth under Mixed-mode loading (혼합모드 하중 하에서의 균열성장 중 피로파단면 마찰과 균열닫힘효과의 상호관계)

  • Seo, Ki-Jeong;Song, Sam-Hong;Lee, Jeong-Moo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.214-219
    • /
    • 2004
  • Crack tip behavior of single mode loading condition(mode I)depend on tensile loading component but one of mixed mode loading condition(mode I+II) have influenced on shear loading component like the practical structure. Because crack closure is caused by shear loading component under mixed-mode loading a research on the behavior in the stage of crack initiation and propagation require to be evaluate about crack closure effect by fatigue crack surface friction. For that reasion we examined the behavior at the crack tip by direct measuring method. Measured behavior at the crack tip was analyzed through vector crack tip displacement. As a result, crack propafation equation was corrected by considering with crack closure effect. In addition we compared fatigue fracture crack surface and crack closure level.

  • PDF

Advanced Powder Processing Techniques of Ti Alloy Powders for Medical and Aerospace Applications

  • Miura, Hideshi
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.323-331
    • /
    • 2013
  • In this paper, two kinds of advanced powder processing techniques Metal Injection Molding (MIM) and Direct Laser Forming (DLF) are introduced to fabricate complex shaped Ti alloy parts which are widely used for medical and aerospace applications. The MIM process is used to strengthen Ti-6Al-4V alloy compacts by addition of fine Mo, Fe or Cr powders. Enhanced tensile strength of 1030 MPa with 15.1% elongation was obtained by an addition of 4 mass%Cr because of the microstructural modification and also the solution strengthening in beta phase. However, their fatigue strength was lower compared to wrought materials, but was improved by HIP. Subsequently, the effect of feeding layer height (FLH) on the characteristics of the DLF compacts was investigated. In the case of 100 ${\mu}m$ FLH, surface roughness was improved and nearly full density (99.8%) was obtained. Also, tensile strength of 1080 MPa was obtained, which is higher than the ASTM value.

Experimental investigation on the behaviour of UHPC-steel composite slabs under hogging moment

  • Gao, Xiao-Long;Wang, Jun-Yan;Bian, Chen;Xiao, Ru-Cheng;Ma, Biao
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.765-777
    • /
    • 2022
  • Ultra high performance concrete (UHPC) can be used in the UHPC-steel composite structures especially for bridge structures to achieve high stiffness and high fatigue resistance with low self-weight. The structural performances of UHPC-steel composite slabs subjected to hogging moment have a significant influence on the global stiffness and durability of UHPC-steel composite structures. In order to study the structural behaviors of non-steam-cured UHPC-steel composite slabs subjected to negative moment, five composite slabs combined the thin UHPC layers to steel plates via shear stud connecters with the diameter of 16mm were fabricated and tested under negative moment. The test program aimed to investigate the effect of stud spacing and longitudinal reinforcement ratios on the failure mode, load-deflection behaviors, cracking patterns, bond-slips, and carrying capacities of composite slabs subjected to negative moment. In addition, direct tensile tests for the dog-bone UHPC specimens with longitudinal reinforcement bars were carried out to study the effect of reinforcement bars on the tensile strength of UHPC in the thin structure members. Based on the experimental results, analytical models were also developed to predict the cracking load and ultimate load of UHPC-steel composite slabs subjected to negative moment.

An Evaluation on Quality of Field Trial Protocol using Pay Factor and Analysis of Fatigue Life (지불계수를 이용한 시험포장구간의 품질평가와 피로수명 분석)

  • Lee, Jae-Hack;Rhee, Suk-Keun;Kim, Seong-Min;Hwang, Sang-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.133-142
    • /
    • 2009
  • This research is performed to estimate quality of trial pavement for construction and analyze effect of fatigue life by using the pay factor. Specially, asphalt content which is difficult to control the pavement quality, is selected by pay adjustment standard factors and pay factor is calculated by asphalt content. This research is also analyzed to present relation of fatigue life according to asphalt content, to evaluate quality of the road pavement by calculating pay factor of sampling trial field mixture 2 times. This research confirms that it is different quality of road pavement according to pay factor changes. To analyze the fatigue life of pavement by using asphalt mixture for trial field. As a result, it is conformed that high pay factor could be high fatigue life of trial field. This means that pay factor using probability theory reflects road pavement fatigue life. Also, this study is included that beam fatigue test manufacturing specimen such as mixing type of plant which purvey asphalt mixture to trial field, compared with fatigue life of trial field. As a result, the fatigue life of specimen that is manufactured by mix type is higher than trial field specimen. This means that performance of road pavement can be reduced by gradation or other effects. Therefore, to exactly evaluate the quality of road pavement, pay factor should be calculated appling various pay adjustment standard factors such as gradation, air-void in U.S. states which is adopted pay adjustment.

  • PDF

A Study on Shear-Fatigue Behavior of New Polymer Reinforced Concrete Beams (신(新)폴리머 철근(鐵筋)콘크리트보의 전단피로(剪斷疲勞) 거동(擧動)에 관(關)한 연구(研究))

  • Kwak, Kae Hwan;Park, Jong Gun;Jang, Ki Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.35-44
    • /
    • 1993
  • The objective of this study is aimed at developing a new class of polymer concrete, in which hydration of cement and curing of a thermosetting resin can take place simultaneously during the mixing of concrete components. For the selected mix-proportion of the new polymer, the physical and mechanical properties needed for designs are presented. These important properties are compressive strength, flexural strength, split tensile strength, direct strength, fatigue characteristics and fracture parameters. The observed properties are always compared with conventional concrete to serve as reference for engineer in deciding or selecting the proper materials for their projects, and shore protecting structure.

  • PDF

Evaluation of Properties of Warm-Mix Recycled Asphalt Binder for Promoting the Recycled Asphalt (순환골재 활성화를 위한 중온 재생 아스팔트 바인더 특성 평가)

  • An, Ji Hun;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1101-1107
    • /
    • 2016
  • As an increase in the amount of RAP, there are growing interests in recycling asphalt concrete. In case of using the RAP as recycled asphalt pavement, it tends to be quality deteriorate. Therefore, the amount of RAP using is advised to be limited or has to be used with rejuvenator. In this study, asphalt mixture containing WMRA was analyzed to be used up to 50% for the sake of convenience on the process. As the results of evaluation, there was no significant difference in case of using 30% of RAP in the test of Marshall stability. However, in case of WMRA using up to 50%, it was satisfied criteria by flow value at 34.7. Further, result of toughness test was found that the crack resistance showed 55% higher than using straight asphalt when using WMRA binder up to 50%. According to the results of directly comparing crack resistance through repeated direct tensile test, it was shown that the fatigue crack resistance of WMRA pavement was increased by 263%. Therefore, it was shown that WMRA binder was effective in recycling RAP because WMRA binder could increase the percentage of RAP using up to 50%.

Development of Additive to Modify the SDAR (Solvent DeAsphalting Residue) and Laboratory Performance Evaluation of Asphalt Mixture with Modified SDAR (고품위화 정제공정 부산물(SDAR) 활용을 위한 첨가제 개발 및 이를 이용한 아스팔트 혼합물의 실내 공용성능 평가)

  • Baek, Cheolmin;Yang, Sung Lin;Hwang, Sung Do
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.97-104
    • /
    • 2016
  • OBJECTIVES : The objective of this research is to develop additives for the modification of Solvent DeAsphalting Residue (SDAR) to be used as pavement materials, and evaluate the performance of asphalt mixture manufactured using the SDAR modified by developed additives. METHODS : The SDAR generally consists of more asphaltenes and less oil components compared to the conventional asphalt binder, and hence, the chemical/physical properties of SDAR are different from that of conventional asphalt binder. In this research, the additives are developed using the low molecular oil-based plasticizer to improve the properties of SDAR. First, the chemical property of two SDARs is analyzed using SARA (saturate, aromatic, resin, and asphaltene) method. The physical/rheological properties of SDARs and SDARs containing additives are also evaluated based on PG-grade method and dynamic shear-modulus master curve. Second, various laboratory tests are conducted for the asphalt mixture manufactured using the SDAR modified with additives. The laboratory tests conducted in this study include the mix design, compactibility analysis, indirect tensile test for moisture susceptibility, dynamic modulus test for rheological property, wheel-tracking test for rutting performance, and direct tension fatigue test for cracking performance. RESULTS : The PG-grade of SDARs is higher than PG 76 in high temperature grades and immeasurable in low temperature grades. The dynamic shear modulus of SDARs is much higher than that of conventional asphalt, but the modified SDARs with additives show similar modulus compared to that of conventional asphalt. The moisture susceptibility of asphalt mixture with modified SDARs is good if, the anti-stripping agent is included. The performance (dynamic modulus, rutting resistance, and fatigue resistance) of asphalt mixture with modified SDARs is comparable to that of conventional asphalt mixture when appropriate amount of additives is added. CONCLUSIONS : The saturate component of SDARs is much less than that of conventional asphalt, and hence, it is too hard and brittle to be used as pavement materials. However, the modified SDARs with developed additives show comparable or better rheological/physical properties compared to that of conventional asphalt depending on the type of SDAR and the amount of additives used.