• 제목/요약/키워드: direct printing process

검색결과 106건 처리시간 0.034초

Fabrication of Flexible OTFT Array with Printed Electrodes by using Microcontact and Direct Printing Processes

  • Jo, Jeong-Dai;Lee, Taik-Min;Kim, Dong-Soo;Kim, Kwang-Young;Esashi, Masayoshi;Lee, Eung-Sug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.155-158
    • /
    • 2007
  • Printed organic thin-film transistor(OTFT) to use as a switching device for an organic light emitting diode(OLED) were fabricated in the microcontact printing and direct printing processes at room temperature. The gate electrodes($5{\mu}m$, $10{\mu}m$, and $20{\mu}m$) of OTFT was fabricated using microcontact printing process, and source/drain electrodes ($W/L=500{\mu}m/5{\mu}m$, $500{\mu}m/10{\mu}m$, and $500{\mu}m/20{\mu}m$) was fabricated using direct printing process with hard poly(dimethylsiloxane)(h-PDMS) stamp. Printed OTFT with dielectric layer was formed using special coating system and organic semiconductor layer was ink-jet printing process. Microcontact printing and direct printing processes using h-PDMS stamp made it possible to fabricate printed OTFT with channel lengths down to $5{\mu}m$, and reduced the process by 20 steps compared with photolithography. As results of measuring he transfer characteristics and output characteristics of OTFT fabricated with the printing process, the field effect characteristic was verified.

  • PDF

Fabrication of All-Solution Processed Transparent Silver Nanowire Electrode Using a Direct Printing Process

  • 백장미;이린;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.641-641
    • /
    • 2013
  • We report the transparentsilver nanowire electrode fabricated by a direct printing process, liquid-bridge-mediated nanotransfer molding. We fabricated silver nanowire arrays by liquidbridge- mediated nanotransfer molding using the silver nanoparticle ink and PEDOT:PSS polymer. Weinvestigated the formation of silver nanowire arrays by SEM and transmittance of the transparent silver nanowire electrode. We also measured the conductivity to confirm the potential of our approach.

  • PDF

High-Performance Single-Crystal Organic Nanowire Field-Effect Transistors of Indolocarbazole Derivatives

  • 박경선;정진원;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.368-368
    • /
    • 2012
  • We report solution-processed, high-performance single-crystal organic nanowire transistors fabricated from a novel indolocarbazole (IC) derivative. The direct printing process was utilized to generate single-crystal organic nanowire arrays enabling the simultaneous synthesis, alignment and patterning of nanowires using molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. These new molecules are particularly suitable for p-channel organic field-effect transistors (OFETs) because of the high level of crystallinity usually found in IC derivatives. Selected area diffraction (SAED) and X-ray diffraction (XRD) experiments on these solution-processed nanowires showed high crystallinity. Transistors fabricated with these nanowires gave a hole mobility as high as 1.0 cm2V-1s-1 with nanowire arrays with the direct printing process.

  • PDF

롤투롤 인쇄 시스템에서의 기판 소재의 거칠기와 표면에너지를 이용한 잉크 전이에 대한 연구 (A Study on the Ink Transfer Using the Roughness and Substrate Energy of Substrate in Roll to Roll Printing Systems)

  • 신기현;김호준
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.103-109
    • /
    • 2010
  • An ink transfer is modeled and experimentally verified using roll-to-roll electric direct gravure printing process. The ink transfer model based on the physical mechanism for the maximum ink transfer rate is proposed, and experimented by the electric printing machine in FDRC for the relations of the maximum ink transfer rates to the printing pressure, the operating speed, the operating tension, the surface roughness of substrates, and the contact angle between substrate and silver ink. The free ink split coefficient and immobilized ink under the maximum ink transfer rate are calculated by the physical parameter in a printing process and contact angle between substrates and ink. Numerical simulations and experimental studies were carried out to verify performances of the proposed ink transfer model. Results showed that the proposed ink transfer model was effective for the prediction of the amount of transferred ink to the substrate in a direct gravure printing systems.

LCD Colorfilter용(用) Millbase의 분산특성과 레올로지 거동 (The Rheological Behavior and Dispersion Properties of Millbase for LCD Colorfilters)

  • 나대엽;정일봉;남수용;유춘우;최용정
    • 한국전기전자재료학회논문지
    • /
    • 제20권5호
    • /
    • pp.450-455
    • /
    • 2007
  • LCD color filters have been manufactured in a process called photolithography to date, but various printing methods have been studied currently in response to the trend of low-end LCD panels. Direct Printing Process is a suitable fabrication technique to develope pigment components whose dimensions are in nano. The success of this process depends on the systematic preparation of pigment millbase. Conventional millbase dispersions are constituted of the organic pigments, monomer, dispersant and solvents. An experimental study on the rheology of millbase dispersions is presented. Subsequently, this thesis attempts to find out the dispersive characteristics as well as the selection of pigments, monomers and dispersants in the part of millbase among the stages of manufacturing LCD color filters using the direct printing methods. The dispersive characteristics were shown through analytic devices such as PSA, Rheometer, etc.

All-Organic Nanowire Field-Effect Transistors and Complementary Inverters Fabricated by Direct Printing

  • 박경선;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.632-632
    • /
    • 2013
  • We generated single-crystal organic nanowire arrays using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. The position of the nanowires on complex structures is easy to adjust, because the mold is movable on the substrates before the polar liquid layer, which acts as an adhesive lubricant, is dried. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with twoor three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

Fabrication of Large-Scale Single-Crystal Organic Nanowire Arrays for High-Integrated Flexible Electronics

  • 박경선;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.266.1-266.1
    • /
    • 2013
  • Large-scale single-crystal organic nanowire arrays were generated using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with two- or three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

Direct printing process based on nanoimprint lithography to enhance the light extraction efficiency of AlGaInP based red LEDs

  • Cho, Joong-Yeon;Kim, Jin-Seung;Kim, Gyu-Tae;Lee, Heon
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.171-171
    • /
    • 2012
  • In this study, we fabricated the high-brightness AlGaInP-based red light emitting diodes (LED)s using by direct printing technique and inductive coupled plasma (ICP) reactive ion etching (RIE). In general, surface roughening was fabricated by wet etching process to improve the light extraction efficiency of AlGaInP-based red LED. However, a structure of the surface roughening, which was fabricated by wet etching, was tiled cone-shape after wet etching process due to crystal structure of AlGaInP materials, which was used as top-layer of red LED. This tilted cone-shape of surface roughening can improve the light extraction of LED, but it caused a loss of the light extraction efficiency of LED. So, in this study, we fabricated perfectly cone shaped pattern using direct printing and dry etching process to maximize the light extraction efficiency of LED. Both submicron pattern and micron pattern was formed on the surface of red LED to compare the enhancement effect of light extraction efficiency of LEDs according to the diameter of sapphire patterns.After patterning process using direct printing and ICP-RIE proceeded on the red LED, light output was enhanced up to 10 % than that of red LED with wet etched structure. This enhancement of light extraction of red LED was maintained after packaging process. And as a result of analyze of current-voltage characteristic, there is no electrical degradation of LED.

  • PDF

Direct Write 기술을 이용한 3DCD의 제작 (Fabrication of 3D-Printed Circuit Device using Direct-Write Technology)

  • 윤해룡;김호찬;이인환
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.1-8
    • /
    • 2016
  • Generally, electrical circuits are fabricated as Printed Circuit Boards (PCBs) and mounted on the casing of the product. Additionally, this requires many other parts and some labor for assembly. Recently, molding technology has increasingly been applied to embed simple circuits in plastic casing. The technology is called a Molded Interconnected Device (MID). By using this technology, PCB fabrication can be replaced by molding, and much of the corresponding assembly process for PCBs can be eliminated if the circuit is simple enough for molding. Furthermore, as the improvement of conductive materials and printing technologies of simple electric circuits can be printed directly on the casing part, this also reduces the complexity of the product design and production cost. Therefore, this paper introduces a new MID fabrication process using direct 3D printing technology. Additionally, it is applied to an automotive part of a cruise control switch. The methodology and design are shown.

금속 3D 프린팅 적층제조(AM) 공정 시뮬레이션 기술에 관한 고찰(I) (Investigation to Metal 3D Printing Additive Manufacturing (AM) Process Simulation Technology (I))

  • 김용석;최성웅;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권3호
    • /
    • pp.42-50
    • /
    • 2019
  • 3D printing AM processes have advantages in complex shapes, customized fabrication and prototype development stage. However, due to various parameters based on both the machine and the material, the AM process can produce finished output after several trials and errors in the initial stage. As such, minimizing or optimizing negative factors for various parameters of the 3D printing AM process could be a solution to reduce the trial-and-error failures in the early stages of such an AM process. In addition, this can be largely solved through software simulation in the preprocessing process of 3D printing AM process. Therefore, the objective of this study was to investigate a simulation technology for the AM software, especially Ansys Inc. The metal 3D printing AM process, the AM process simulation software, and the AM process simulation processor were examined. Through this study, it will be helpful to understand 3D printing AM process and AM process simulation processor.