• Title/Summary/Keyword: direct landfilling prohibition

Search Result 3, Processing Time 0.021 seconds

Effect of Moisture Content on Direct Landfilling Prohibition of Organic Sludge (유기성오니 직매립금지에 대한 수분함량의 영향 검토)

  • Ko, Jae-Young;Phae, Chae-Gun;Park, Joon-Seok
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.470-477
    • /
    • 2007
  • This research was conducted to evaluate the effect of moisture content on direct landfilling prohibition of organic sludge. Organic sludges with moisture content (Me) of 75 and 85% were filled in two lysimeters. The lysimeters were named as Exp.75 and Exp.85, respectively. LFG of 2,064 l was generated greatly for Exp.85, compared to 1,500 l for Exp.75. LFG generations in Exp.75 and Exp.85 were 64.1 l/kg and 157.1 l/kg as dry TS basis, and 113.6 l/kg and 266.2 l/kg as dry VS basis. Total $CH_4$ generation in LFG for Exp.85 was 1,238 l, while 1,050 l for Exp.75. $H_2S$ of $3{\sim}150$ ppmv was generated from Exp.85, which was 5 times higher than $2{\sim}30$ppmv from Exp.75. Leachate was not generated from Exp.75 during operation time. However, 420 ml of leachate was generated from Exp.85. From the results of gas generation, composition, odorous compounds, and leachate generation, landfilling of organic sludge with high MC was more harmful to the environment in spite of great LFG generation. However, direct landfilling of organic sludges without great difference of MC made a severe odor problem. Therefore, it was thought that current direct landfilling prohibition law for all organic sludge was appropriate.

Effect of Food Waste Direct Landfilling Prohibition on Characteristics of Landfill Gas and Leachate (음식물류폐기물 직매립금지가 매립지 가스 및 침출수 특성에 미치는 영향)

  • Ko, Jae-Young;Phae, Chae-Gun;Park, Joon-Seok
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.612-617
    • /
    • 2007
  • This research was performed to evaluate the effect of 'Food Wastes (FW) Direct Landfilling Prohibition' on characteristics of landfill gas (LFG) and leachate and the appropriateness of current legislation. Approximately 45% (Exp.45) and 15% (Exp.15) of FW were filled in two lysimeters. During 570 days, 1400 L of LFG was generated from Exp.45%, which was much more than 906 L of Exp.15. There was no significant difference of LFG composition between Exp.15 and Exp.45. 2~30 ppmv of odorous hydrogen sulfide was detected in Exp.45, while 2~7 ppmv was in Exp.15. There was also no significant difference in the leachate generation between the two. On day 570, $BOD_5$ of Exp.45 and Exp.15 were 37000 mg/Land 25630 mg/L and $COD_{Cr}$ of Exp.45 and Exp.15 were 45480 mg/L, 30294 mg/L. TOC of Exp.45 was 2~3 times higher than Exp.15. Higher portion of FW in landfilling increased LFG generation. However, it generated more odor and made the quality of leachate. Therefore, 'FW direct Landfilling Prohibition' was evaluated as an appropriate legislation.

Effect of Continuous Treatment of Mixed Organic Fertilizer With Food Waste on the Growth of Lettuce

  • Yosep Kang;Ho-Jun Gam;Eun-Jung Park;Seong-Heon Kim;Sang-Mo Kang;In-Jung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.111-111
    • /
    • 2022
  • According to data from the Ministry of Environment, food waste accounted for 27% of the nation5 s household waste in 2020, and 4.67 million tons of food waste is being discharged per year. According to the Food Waste Direct Landfill Prohibition Act, food waste must be incinerated, composted, fodder, and decomposed before landfilling. The cost of incineration and landfilling of food waste is considerable. Therefore, through the process of turning food waste into fertilizer, we are going to investigate the limit of crop application and the change in the growth of crops during continuous use of food waste fertilizer. This study investigated the growth of lettuce such as shoot length, root length, leaf number, fresh weight, and dry weight after treating lettuce with food waste dry powder mixed fertilizer. The experiment was carried out continuously in 2021 (1st year) and 2022 (2nd year), and the treatment groups were set to No Treatment (NT), Chemical Fertilizer (CF), Mixed Fertilizer (MF×1), and Mixed Fertilizer×2 (MF×2), was repeated 3 times. As a result of the 1st year growth survey, there was no significant difference between NT and CF in the case of shoot length, but MF×1 and MF×2 were significantly decreased compared to NT. Root length was not significantly different in all treatment groups. As for the leaf number, there was no significant difference between NT and MF×1, but CF and MF×2 were significantly decreased compared to NT. In fresh weight, MF×1 and MF×2 were significantly decreased compared to NT, and in the case of dry weight, there was no significant difference between NT, MF×1, and MF×2. As a result of the 2nd year growth survey, there was a significant difference in CF and MF×2 in leaf number, but there was no significant difference in all treatment groups with respect to shoot length, root length, fresh weight, and dry weight. Through continuous additional research, it is necessary to confirm the change in soil composition and the growth of crops due to food waste fertilizer treatment.

  • PDF