• Title/Summary/Keyword: direct kinematics

Search Result 70, Processing Time 0.026 seconds

Realization of an output controller simulator based on Windows NT for a direct drive cooperative robot using OpenGL (Windows NT 환경에서 OpenGL을 이용한 직접구동 협조로봇용 Output Tracking 시뮬레이터 구현)

  • 최대범;양연모;안병하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.346-349
    • /
    • 1995
  • In this paperwe develop a real-time simulator for direct drive cooperative robot by using OpenGL in a Windows NT based system. This simulator is composed of 2 parts, a display part and an interface part. In the display part the robot is modelled and rendered in 3D space. To do this OpenGL, a kind of graphic library, is used for rendering and animating robots and kinematics gives the information of the current robot configuration. The control and the feedback data are sent and received via the interface part. In real time simulation interfacing part needs fast data transfer rate and good nosic immunity. In experiment we have simulated 2-link direct drive cooperative robots using the trajectory tracking algorithm proposed in reference.

  • PDF

Assessment of Lumbar Spine Kinematics by Posterior-to-Anterior Mobilization

  • Oh, Kang O;Lee, Sang-Yeol
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.450-456
    • /
    • 2021
  • Objective: Studies confirming the lumber spine kinematics of direct or indirect segmental mobility under the application of joint mobilization, which induces passive force on the spine, are insufficient.Therefore, this study aims to obtain the underlying clinical data by identifying direct or indirect segmental mobility produced by Maitland's PA mobilization technique. Design: Randomized controlled trial design. Methods: Thirty subjects with no back pain participated in this study. X-ray testing equipment (SIG-40-525, Ecoray Inc., Korea) was used to verify the segmented movement of their lumbar. Joint mobilization was performed by physiotherapists with more than 10 years of experience in prescription therapy, and radiography was performed once without PA joint mobilization and once without the mobilization for comparing the lumbar vertebrae before and after the mobilization. The radiographs taken were analyzed using the picture archiving and communication system (PACS) program to measure the spinal displacement, intervertebral height, intervertebral angle, and lumbar lordosis angle. Results: Significant differences were observed in the lumbar displacement, intervertebral angle, and lumbar lordosis angle in all lumbar vertebrae before and after the mobilization. The intervertebral height indicated significant differences in all ventral vertebrae and only in L3-L4 and L4-L5 in dorsal vertebrae. Conclusions: This study suggests that the segmental mobility produced through indirect approaches plays an important role in inducing therapeutic effects in patients with back pain.

Design of Multi-Linked Lifter (다관절 고소 작업 장치의 개발)

  • Kim, Myun-Hee;Lee, Sang-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.562-565
    • /
    • 2000
  • For solving problems of manpower and improving working environment, Robot System have been introduced. In the past, Robot System was adopted mass production, indoor factory condition, but present Robot System is applied to many other fields. This applied field is Robot System was adopted fruit harvest, maintenance, and so on. The developed Multi-Linked Lifter is applied to eminant multi-purpose working. The purpose of this study is to develop control algorithm for this equipment composed of multi-linked manipulator.

  • PDF

Study on Propeller Grinding Applied by a High Stiffness Robot (고감성 로봇을 이용한 프로펠러 연삭에 관한 연구)

  • Lee, M.K.;Park, B.O.;Park, K.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.56-65
    • /
    • 1997
  • This paper presents the robot program for propeller grinding. A robot manipulator is constructed by combining a parallel and a serial mechanism to increase high sitffness as well as workspace. The robot program involves inverse/direct kinematics, velocity mapping, Jacobian, and etc. They are cerived in efficient formulations and implemented in a real time control. A velocity control is used to measure the hight of a propeller blade with a touch probe and a position control is performed to grind the surface of the blade.

  • PDF

Hybrid Position/Force Control of Direct Drive Robots by Disturbance Observer in Task Coordinate Space. (외란 오브저버에의한 작업좌표공간에서의 다이렉트 드라이브 로보트의 위치와 힘의 하이브리드 제어)

  • Shin, Jeong-Ho;Komada, Satoshi;Ishida, Muneaki;Hori, Takamasa
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.411-413
    • /
    • 1992
  • This paper proposes a simple and high performance hybrid position/force control of robots based on disturbance compensation by using the disturbance observer in task coordinate space. The disturbance observer linealizes system of robot manipulators in task coordinate space and realizes acceleration control. To realize the strict acceleration control, the disturbance observer whose input is a position signal by simple computation, works as if it were a disturbance detector. The inverse kinematics can be simplified, because the disturbance observer in task coordinate space compensates not only the disturbance but also the error due to the simplification of the inverse kinematics. The new strategy is applied to a three-degrees-of freedom direct drive robot. The robust and simple hybrid position/force control is realized experimentally.

  • PDF

A Study on the Kinematic Winding Control Algorithm for Degressive Pirn Winding (디그레시브 펀 권사(Degressive Pirn Winding)를 위한 기구학적 권사 제어 알고리듬에 관한 연구)

  • 최영휴;정원지;김광영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.133-139
    • /
    • 2003
  • Direct motor-driven winding has been increasingly applied in winding machinery. However, it is necessary to analyze the kinematics of winding prior to developing the winding control algorithm, because direct motor-driven winding machine should be operated in accordance with the pre-determined kinematic information for the winding control. This paper presents the kinematics of the degressive winding method and its kinematic winding control algorithm in order to wind the required volume of a pirn package in a desired shape. The proposed algorithm can give the appropriate yarn speed, traverse speed, and the spin speed of the spindle at every traverse stroke, which are utilized for controlling the spindle motor and traverse motor of the winding machine. Computer winding simulations showed that the proposed algorithm is successful in the degressive pirn winding.

A study on Development of Footwear Shape Scanner for Off-Line Robot Path Programming

  • Lho, Tae-Jung;Song, Se-Hoon;Ju, Hyun-Woo;Lee, Jung-Wook;Cho, Jae-Kung;Ahn, Hee-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.808-812
    • /
    • 2003
  • We need a lot of manpower and we can cut down a labor cost by applying industrial robots the footwear bonding automation process. In this study, we suggest how to program off-line robot path along a shoe's outsole shape in the footwear bonding process by 5-axis microscribe system like robot arms. This microscribe system development consists 5-axis microscribe mechanics, signal processing circuit, and PC with software. It is the system for making database of a shoe's outsole through the movement of a microscribe with many joints. To do this, first read 5-encoders' pulse values while a robot arm points a shoe's outsole shape from the initial status. Then, calculate a relative shoe's outsole by Denavit-Hatenberg's (D-H) direct Kinematics of known length of links and coordinate values. Next, calculate the encoders' pulse values of the robot arm's rotation and transmitting the angle pulse values to the PC through a circuit. Finally, it is able to display a shoe's outsole at real-time by computing the Denvavit-Hantenberg's (D-H) direct kinematics in the PC. With the coordinate values calculated above, we can draw a bonding gauge-line on the upper. Also, we can make off-line robot path programming compute a shoe's bonding area on the upper. These results will be effectively applied for programming a robot path on off-line and automatically.

  • PDF

A Study on Development of Off-Line Path Programming for Footwear Buffing Robot

  • Lho, Tae-Jung;Kang, Dong-Joon;Che, Woo-Seung;Kim, Jung-Young;Kim, Min-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1469-1473
    • /
    • 2004
  • We suggest how to program off-line robot path along shoes' outsole shape in the footwear buffing process by a 5-axis microscribe system like robot arms. This microscribe system developed consists a 5-axis robot link with a turn table, signal processing circuit, PC and an application software program. It makes a robot path on the shoe's upper through the movement of a microscribe with many joints. To do this, first it reads 5-encoder's pulse values while a robot arm points a shoes' outsole shape from the initial status. This system developed calculates the encoder pulse values for the robot arm's rotation and transmits the angle pulse values to the PC through a circuit. Then, Denavit-Hartenberg's(D-H) direct kinematics is used to make the global coordinate from robot joint one. The determinant is obtained with kinematics equation and D-H variable representation. To drive the kinematics equation, we have to set up the standard coordinates first. The many links and the more complicated structure cause the difficult kinematics problem to solve in the geometrical way. Thus, we can solve the robot's kinematics problems efficiently and systematically by Denavit-Hartenberg's representation. Finally, with the coordinate values calculated above, it can draw a buffing gauge-line on the upper. Also, it can program off-line robot path on the shoes' upper. We are subjected to obtaining shoes' outline points, which are 2 outlines coupled with the points and the normal vector based on the points. These data is supposed to be transformed into .dxf file to be used for data of automatic buffing robot. This system developed is simulated by using spline curves coupled with each point from dxf file in Autocad. As a result of applying this system to the buffing robot in the flexible footwear manufacturing system, it can be used effectively to program the path of a real buffing robot.

  • PDF

Analysis of the Body Segment Kinematics by Lap Time during Men's 5,000m Racing (남자 5000M 경주 시 순위에 따른 랩 타임별 운동학적 변인 분석)

  • Chung, Nam-Ju
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.197-207
    • /
    • 2005
  • The purpose of this study was to investigate the body segment kinematics by lap time during men's 5,000m racing. The subjects in this study were 4 male athletics who take part in the competition. The two dimension motion analysis with DLT(direct linear transformation) method was executed using digital video cameras. The following conclusion was that : It was shown that top ranking in a competition is continuous race pattern and the last Lap time is the most fast. It was shown that top ranking in a competition is continuos the stride length and it was the largest in the last Lap time. It was shown that according to the passing Lap time trunk frontal angle was decreasing and shoulder angle was continuous.

Study on Development of a machining robot using Parallel mechanism

  • Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki;Kyung, Jin-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • This research develops the robot for the machining work. For machining work(cutting, milling, grilling, etc.), a robot manipulator is constructed by combining a parallel and a serial mechanism to increase stiffness as well as enlarge workspace. Based on the geometric constraints, this paper develops the formulation for inverse/direct kinematics and Jacobian to design and control a robot. Workspace is also analyzed to prove the advantage of the proposed robot.

  • PDF