• Title/Summary/Keyword: direct heat method

Search Result 262, Processing Time 0.031 seconds

A simulation on the energy saving based on different temperature tracing method and weather condition in electrical power plant (화력발전소 배관시스템의 운전 및 기후조건에 따른 에너지절감에 관한 시뮬레이션)

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • Most of steam power plants in Korea are using the method of heating the feed water whenever the ambient temperature around the power plant area below $5^{\circ}C$ to prevent freezing water flowing in the pipe in winter time. But this kind of heat supplying system is not useful to save energy. If we take the method that the temperature of the each pipe is controled by direct measure of temperature by attaching sensor on the outside surface of the feed water tubes, then we can expect that a plenty of energy can be saved. In this study, the computer simulation is used to compare the energy consumption loads of both systems. Energy saving rate is calculated for the location of Incheon area in winter season. Four convection heat transfer coefficients for the ambient air and three initial flowing water temperature inside the tube were used. The result shows that the temperature control system using sensor represents more than 95% of energy saving rate in Incheon area. Even in the severe January weather condition, the energy saving rate is almost 75% in two days basis and even 83% in one day basis.

Development and Evaluation of an Apparatus to Measure the Solar Heat Gain Coefficient of a Fenestration System According to KS L 9107 (KS L 9107에 의한 태양열 취득률(SHGC) 측정장치 개발 및 평가)

  • Kim, Tae-Jung;Choi, Hyun-Jung;Kang, Jae-Sick;Park, Jun-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.11
    • /
    • pp.512-521
    • /
    • 2014
  • Recently, multiple glazing units, frames, complex fenestration systems, and windows with shading devices have been developed to save cooling energy in buildings. However, very little work has been conducted on developing a direct experimental test method of the solar heat gain coefficient(SHGC) for new fenestration techniques. This study aims to develop and evaluate a test apparatus to measure the SHGC, according to the KS L 9107 test method. The performance of the solar simulator was class A, B, and A, for spectral match, non-uniformity, and instability irradiance, respectively. The differences between the measured and calculated SHGC values were found to range between 0.001 and 0.011, and for all test specimens they agreed within 4%. These results establish the validity of the test apparatus. This system is thus expected to be useful in assessing the energy performance for various types of fenestration.

Thermal Conductivity Analysis of Amorphous Silicon Formed by Natural Cooling: A Molecular-dynamics Study

  • Lee, Byoung Min
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.295-300
    • /
    • 2016
  • To investigate the thermal conductivity and the structural properties of naturally cooled excimer-laser annealed Si, molecular-dynamics (MD) simulations have been performed. The thermal conductivity of crystalline Si (c-Si) was measured by direct method at 1000 K. Steady-state heat flow was measured using a stationary temperature profile; significant deviations from Fourier's law were not observed. Reliable processes for measuring the thermal conductivity of c-Si were presented. A natural cooling process to admit heat flow from molten Si (l-Si) to c-Si was performed using an MD cell with a size of $48.9{\times}48.9{\times}97.8{\AA}^3$. During the cooling process, the temperature of the bottom $10{\AA}$ of the MD cell was controlled at 300 K. The results suggest that the natural cooling system described the static structural property of amorphous Si (a-Si) well.

A Study on the Characteristics of Injection and Combustion with Directly Injected Hydrogen Fuel (직접분사식 수소연료의 분무 및 연소특성에 관한 연구)

  • Lee, Seang-Wock;Kee, Wan-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.24-29
    • /
    • 2007
  • This study aims to provide a fundamental data for directly injected hydrogen fuel engines. Spray, ignition and combustion characteristics of hydrogen were studied using constant volume chamber. For spray visualization, hydrogen was vertically injected into a combustion chamber at various condition, for example, injection pressure, ambient pressure. And an argon laser was used for the shadowgraph photography by applying optical method. Also, to investigate heat-release rate and flame propagations, spark was ignited on hydrogen injected at the different time after injection and the duration of injection was also changed. Processes of ignition and combustion were analyzed by heat-release rate calculated by pressure history and were observed by shadowgraph photography The results gave much knowledge of spray, ignition and combustion characteristics of hydrogen.

A Study on Property of Thermoset Composite in FPS Process (FPS 공정에 의한 열경화성 복합재 유효성 검증 연구)

  • Kim J-H;Um M-K;Byun J-H;Lee S-K;Jeon Y-J
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.241-245
    • /
    • 2004
  • Among the various manufacturing processes of composites, the tape lay-up process of thermoset prepreg has many advantages compared to autoclave or hot press forming. It has a high potential to process automation and continuous fabrication .. Fiber placement developed as a logical combination of filament winding and automated tape placement to overcome some of the limitations of each manufacturing method. Fiber placement uses a compaction device to apply direct contact between the incoming materials in the fiber placement head and Heat is added to the materials at the nip point of the compaction roller. This paper will discuss property of thermoset composite as compaction and heat effect in Automated fiber placement

  • PDF

Performance of a direct methanol fuel cell (DMFCs)Using Nation 115 (Nafion 115를 사용한 DMFC MEA 의 성능실험)

  • Choi, Hoon;Hwang, Yong-Sheen;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.43-46
    • /
    • 2007
  • To find out the optimum design of hydrogen storage and supply tank using Metal Hydride (briefly MH) and to make clear the performance characteristics under various conditions are our research purpose. In order to use the low-temperature exhaust heat, $LaNi_{4.7}Al_{0.3}$ which operates under the low pressure of 1MPa is chosen, and we measure the basic properties, namely density, specific heat, PCT(Pressure-Concentration-Temperature) characteristic, and effective thermal conductivity. Then, a numerical calculation model of hydrogen storage using MH alloy is suggested and this thermal diffusion equation of model is solved by the backward difference method. This calculation results rate compared with the experimental results of the systems which installed 1kg MH alloy and, it is found out that our calculation model can well predict the experimental results. By the experimental using MH alloy, it is recognized that the hydrogen flow rate can control by the step adjustment of brine temperature.

  • PDF

Water-Cooling System of HVDC System (HVDC 시스템의 수냉식 냉각 시스템)

  • 김찬기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.257-267
    • /
    • 1999
  • This paper deals with the water cooling system of HVDC(High Voltage Direct CUlTentJ. It is generally accepted that water is a veη effective medium to remove heat losses from any type of equipment. Because of this benefits the water cooling method is used in HVDC. The water cooling system consists of a heat exchanger, circulation pump and a connecting pipe. According to thYI1stor temperature level. thyristor junction temperature is controlled by controlling the f fan of exchanger. In this paper. the water cooling system of HVDC system is analyzed and estimated.

  • PDF

Numerical Study on the Performance and the Heat Flux of a Coaxial Cylindrical Steam Reformer for Hydrogen Production (수소 생산을 위한 동축원통형 수증기 개질기의 성능 및 열유속에 대한 수치해석 연구)

  • Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Myoung-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.709-717
    • /
    • 2009
  • Heat transfer rate is a very important factor for the performance of a steam reformer because a steam reforming reaction is an endothermic reaction. Coaxial cylindrical reactor is the reactor design which can improve the heat transfer rate. Temperature, fuel conversion and heat flux in the coaxial cylindrical steam reformer are studied in this paper using numerical method under various operating conditions. Langmuir-Hinshelwood model and pseudo-homogeneous model are incorporated for the catalytic surface reaction. Dominant chemical reactions are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming (DSR) reaction. Although coaxial cylindrical steam reformer uses 33% less amount of catalyst than cylindrical steam reformer, its fuel conversion is increased 10 % more and its temperature is also high as about 30 degree. There is no heat transfer limitation near the inlet area at coaxial-type reactor. However, pressure drop of the coaxial cylindrical reactor is 10 times higher than that of cylindrical reactor. Operating parameters of coaxial cylindrical steam reformer are the wall temperature, the inlet temperature, and the Gas Hourly Space Velocity (GHSV). When the wall temperature is high, the temperature and the fuel conversion are increased due to the high heat transfer rate. The fuel conversion rate is increased with the high inlet temperature. However, temperature drop clearly occurs near the inlet area since an endothermic reaction is active due to the high inlet temperature. When GHSV is increased, the fuel conversion is decreased because of the heat transfer limitation and short residence time.

Deposition of Micropattern using The Laser Direct Writing Method with a polymer coating layer (폴리머 코팅층 레이저 직접묘화법을 이용한 미세패턴증착)

  • Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6980-6985
    • /
    • 2014
  • A micro-conductive pattern was fabricated on an insulating substrate ($SiO_2$) surface using a laser direct writing method. In the LIFT process, when the laser beam irradiates a thin metal film, the photon energy is absorbed by the film and converted to thermal energy, and the thermal decomposition reaction produced by the resulting heat conduction forms a deposit on the substrate. The resistivity of the micro-electrodes deposited through LIFT process with and without polymer coating was measured. The results showed that the electric conductivity of the micro-pattern and micro-structure can be increased approximatly two times when the deposited micropattern is fabricated through a LIFT process with a polymer coating, compared to the case without a polymer coating.

Changes of the Composition of Nitrogenous Compounds in Globefish Meat Extracts by the Cooking Method (가열조리가 복어 추출물 함질소화합물의 조성에 미치는 영향)

  • Yang, Yeong;Han, Yeong-Sil;Pyeun, Jae-Hyeung
    • Korean journal of food and cookery science
    • /
    • v.6 no.2
    • /
    • pp.85-96
    • /
    • 1990
  • Globefish, Fugu xanthopterus, known to have a severe toxin, is one of the favorite food in Korea and Japan when the toxic part is removed. In this paper, the effect of cooking on the composition of nitrogenous components in the extractives from globefish cooked investigated and the changes of the taste compounds originated from the nitrogenous components in the extractives were discussed. When the sample fish was analysed for general composition, drip amount and pH by the different methods of thawing, the method effective method was the running water thawing. Total nitrogen content in raw globefish and the frozen globefish was not different, and the nitrogen content was increased with the heat treatment. It seemed that the nitrogen content was higher in the extract from the boiled globefish than that of the steamed globefish. Taurine, lysine, glycine and alanine were occupied about 70% of the total free amino acids. Total free amino acid content was higher in the extracts from the frozen sample than those from the raw sample. The amount of free amino acids was increased when the globefish soup cooked under the direct-heat cooking than in the microwave oven-heat cooking. Among nucleotides in the extracts from the thawed and cooked fishes, IMP and inosine contents were increased, and the both components were decreased with the heating time and by the heating method. Tne content of total creatinine-nitrogen were 50% of the total nitrogen content of the extracts, but the concentration of glycinebetaine, TMA and TMAO were only a few amounts. It could be concluded that total creatinine components, including free amino acids such as taurine, lysine, glycine and alanine, and IMP might be the important components contributing to the taste of the cooked globefish.

  • PDF