• Title/Summary/Keyword: diquat dibromide

Search Result 3, Processing Time 0.022 seconds

Phytotoxicity and Translocation of Residual Diquat Dibromide from Sandy Loam and Loam Soil to Following Crops Cultivating in the Soils

  • Cho, Il Kyu;Kim, Won-Il;Yang, Hae-Ryong;Seol, Jae Ung;Oh, Young Goun;Lee, Dong-gi;Moon, Joon-Kwan;Cho, Woo Young;Kim, Kil Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.260-269
    • /
    • 2021
  • BACKGROUND: Diquat dibromide is a fast-acting nonselective herbicide and plant growth regulator. In this study, in order to understand the possibility of unintentional pesticide contamination in the following crops, the phytotoxicity and transition of diquat dibromide residue in soil into the following crops such as pepper, radish, lettuce and corn have been assessed through phytotoxicity trial and residual evaluation in the unintentional contamination of the higher residual diquat dibromide. METHODS AND RESULTS: The pepper, radish, lettuce and corn were cultivated in the sandy soil and loam soil where the 35 mg/kg and 90 mg/kg diquat dibromide were applied, respectively. Mild growth inhibition symptoms were observed in radish, lettuce and corn crops at the 90 mg/kg- diquat dibromide treatment on the 30 day of cultivation. Diquat dibromide was analyzed using liquid chromatography QTRAP (LC-MS/MS). The recovery rates of diquat dibromide from soil and crop were determined within range from 89.1 to 116.4% with relative standard deviation less than 14.7%. Diquat dibromide residues in soil were found to be 23.90-30.22 and 69.59-82.57 mg/kg from the 35 mg/kg and 90 mg/kg of diquat dibromide-treated soil, respectively after 30 days of crop cultivation. This result implicates that diquat dibromide did not convert to metabolites and remained mostly in the soil, even though it was partially decomposed during crop cultivation. In addition, the diquat dibromide in pepper and radish that were grown for 47 days, and lettuce and corn that were cultivated for 30 days were detected to be 0.01 mg/kg or less in the sandy loam and loam soil where the 90 mg/kg diquat dibromide was applied. CONCLUSION(S): Diquat dibromide did not cause severe phytotoxicity in the following crops as well as it did not uptake and distribute to the following crops, even though it was considered to be residual in the soil.

Effect of Application Time and Rate of Diquat on Preharvest Field Drying of Rice (작물건조제 Diquat의 벼 수확전처리 건조효과 및 이용성)

  • Kwon, Y.W.;Shin, J.C.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.2
    • /
    • pp.147-156
    • /
    • 1981
  • Most of the currently available rice threshers in Korea are of head-feeding type originally developed for threshing paddy at grain moisture content of 15 to 17% on wet basis. And prevailing rice harvesting system is swathing or cutting and bundling upright rice crop at a maturity stage of grain moisture content of ca. 28 to 20%, followed by transient natural drying in the field and threshing at grain moisture content of about 17%. The system often allows rather high field loss of rice both quantitatively and qualitatively. These necessitate use of a preharvest desiccant, and diquat has been registered recently as a rice desiccant. Aim of the present study is to determine the best time and rate of diquat application and to evaluate its utility as a rice desiccant under its optimal usage conditions in Korea. Diquat was not so effective for japonica rice varieties while it was very effective for the new varieties bred from indica x japonica crosses. The best time of application was the period from 2 days before to 3 days after physiological maturity of grain (moisture content of 28% w.b.) and the optimal rate was about 330g of diquat ion/ha. Applying diquat at the right time and rate dropped grain moisture to 15 to 16% (w.b.) within a week after treatment in contrast to that of 20 to 24% in untreated rice. Desiccation of rice crop with diquat resulted in 10 to 15% increase in grain resistance to shattering and significant reduction in percent green rice. However, there was no reduction in milled rice yield and percent whole kernel and was no change in the percent chalky rice and percent tinted rice. Diquat use appears highly desirable, if there is no residue problem which has not been studied in the present study.

  • PDF

Effect of Ethephon and Diquat Dibromide Treatment for Triticale Seed Production on Paddy Field (트리티케일 종자 안정 생산을 위한 생장억제제 및 건조제 처리 효과)

  • Cho, Sang-Kyun;Park, Hyeong-Ho;Oh, Young-Jin;Cho, Kwang-Min;Jang, Yun-Woo;Song, Tae-Hwa;Park, Tae-Il;Kang, Hyun-Jung;Roh, Jae-Hwan;Park, Kwang-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • As for Ethephon treatment, the heading stage is 2 days later at the concentration of 250 ppm and 500 ppm for the booting stage that when there is no treatment, 4 days later at the concentration of 1000 or more ppm but no difference for the blossoming and ripening stage. The culm length get shorter as the concentration of Ethephon is higher and the rate of culm length damaged is 37% for 1500 ppm of booting stage, which is the most effective processing, and the inferior culm length damage rate is bigger than the superior culm length damage rate. There is no difference between the number of glumous flower, culm and litter weight and the non-processing and as for the thousand grain weight, it is slightly bigger than when there is not any processing. The rate of germination is indifferent, the number of seeds get numerous regardless of the concentration of treatment and the number augments by 5% maximum for the booting stage. The number of days it takes from treatment of desiccant to the moisture content for harvesting time is respectively 15 days for seeds of 30 day-treatment, 10 days for seeds of 35 days-treatment and 5 days for seeds of 40 to 45 day-treatment. As for the harvest time after treatment of desiccant, the treatment at $30^{th}$ days and $35^{th}$ after the earing is 8 days earlier than the culture by conventional methods, 8 days earlier for the treatment at $40^{th}$ day. When the desiccant treatment is implemented, the thousand grain weight is heavier as the number of days of treatment gets later. The rate of germination gets higher as the number of days of treatment after earing gets later but there is no statistically significant difference 35 days after the earing. Yields are 37% compared to the culture by conventional methods for the treatment of 30 days after the earing, 70% compared to the culture by conventional methods for the treatment of 35 days after the earing, and 92% compared to the culture by conventional methods for the treatment of 40 days after the earing. The treatment before the physiological maturity impacts greatly upon the quality of seeds.