• Title/Summary/Keyword: dip angle

Search Result 139, Processing Time 0.026 seconds

Kinematic Analysis of Jerk Motion during Successful and Failed Trials of a Male Weight lifter -Case Study of an Olympic Gold Medalist- (역도 용상 Jerk기술동작의 성공.실패에 대한 운동학적 분석 -사례연구-)

  • Park, Tae-Min;Ryu, Ji-Seon;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.739-748
    • /
    • 2009
  • The purpose of this study was to compare successful and failed trials of the dean and jerk exercise performed by an 2008 Beijing Olympic gold medalist. One successful and one failed trial of an Olympic gold medalist (2008 Beijing Olympic 77 kg event) were investigated for this study. A three-dimensional motion analysis was performed, using three digital camcorders (SF: 6Hz). The events were recorded during the 89th Korean National Athletic Games. After analyzing the jerk motion, the following results were found. The successful trial revealed a shorter performance time at Phase 1 and a longer one at Phase 3 and Phase 4 as compared to the failed trial. The vertical displacement of the knee in failed trial was lower than that m the successful one. The differences in the vertical velocity of barbell and knee between the trials were seen at Phase 3 and Phase 4. A faster COM inferior velocity was seen in the successful trial at Phase 3. A more flexed knee angle was seen in the failed trial as compared to the successful trial at E3.

Geology and Mineral Resources of the Okchǒn Zone-The Boundary between the Okchǒn and Chosǒn Systems in the South of Jechǒn, and the Geology in its Vicinity- (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -제천남부(堤川南部)의 옥천계(沃川系)의 조선계(朝鮮系)의 경계(境界) 및 부근(附近)의 지질(地質)-)

  • Kim, Ok Joon;Min, Kyung Duck;Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.225-230
    • /
    • 1986
  • Various interpretations on the boundary between the $Okch{\check{o}}n$ system and the Great Limestone series of the $Chos{\check{o}}n$ system, and on the geologic structure and stratigraphy of the $Okch{\check{o}}n$ system have been yielded by the previous studies, and they are still in hot debate. The present work has mainly studied on the boundary between the $Okch{\check{o}}n$ and $Chos{\check{o}}n$ systems in the south of $Jech{\check{o}}n$, and the geology in its vicinity to clarify the previous misinterpretations if any on the geologic structure and in trun stratigraphy of the area concerned. The boundary between the $Okch{\check{o}}n$ system and the Great Limestone series of the $Chos{\check{o}}n$ system has been thought to be (1) gradational relation which means two systems are the same formation, (2) unconformable relation in which the $Okch{\check{o}}n$ system overlies the $Chos{\check{o}}n$ system, (3) unconformable relation in which the $Chos{\check{o}}n$ system overlies the Okchon system indicating that the age of the $Okch{\check{o}}n$ system is Precambrian, and (4) fault contact in which the $Okch{\check{o}}n$ system of Precambrian age comes in contact with the $Chos{\check{o}}n$ system of Cambro-Ordovician age. The present study clearly found that the relationship between the two systems is a fault zone contact. Shear zone of a width of 300 to 400m is developed, and andesitic volcanics and basic dikes are intruded along the fault zone. This fault contact is exactly the north extension of the Bonghwajae fault, which was denominated long time ago by two of the present authors. The eastern side of the fault has been uplifted so that the $S{\check{o}}changri$ formation of the $Okch{\check{o}}n$ system cropped out in the zone of the Great Limestone series. All the previous workers thought that the $S{\check{o}}changri$ formation rests on the Great Limestone series, but the present study found an overthrust having a strike of $N8^{\circ}E$ and dip of $30^{\circ}NW$ between them, and the $S{\check{o}}changri$ formation has thrusted over the Great Limestone series at the central part of the study area. In the southern and northern parts of this uplifted $S{\check{o}}changri$ formation, the Great Limestone series rests unconformably on it. In the eastern part of the study area where the Mt. Dangdu is located and the previous workers thought that the $S{\check{o}}changri$ formation rests on the Great Limestone series, Precambrian basement rock whose age is older than 1720+50 m.y. crops out in the northern part of the east-west trending high angle fault, and the Great Limestone series rests unconformably on the basement.

  • PDF

Effective Wavefield Separation of Reflected P- and PS-Waves in Multicomponent Seismic Data by Using Rotation Transform with Stacking (다성분 탄성파탐사자료에서 회전 변환과 중합을 이용한 효과적인 P파 반사파와 PS파 반사파의 분리)

  • Jeong, Soocheol;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.6-17
    • /
    • 2013
  • Multicomponent seismic data including both P- and PS-waves have advantages in discriminating the type of pore fluid, characterizing the lithologic attributes and producing the high resolution image. However, multicomponent seismic data recorded at the vertical and horizontal component receivers contain both P- and PS-waves which have different features, simultaneously. Therefore, the wavefield separation of P- and PS-waves as a preprocessing is inevitable in order to use the multicomponent seismic data successfully. In this study, we analyzed the previous study of the wavefield separation method suggested by Jeong and Byun in 2011, where the approximated reflection angle calculated only from one refernce depth is used in rotation transform, and showed its limitation for seismic data containing various reflected events from the multi-layered structure. In order to overcome its limitation, we suggested a new effective wavefield separation method of P- and PS-waves. In new method, we calculate the reflection angles with various reference depths and apply rotation transforms to the data with those reflection angles. Then we stack all results to obtain the final separated data. To verify our new method, we applied it to the synthetic data sets from a multi-layered model, a fault model, and the Marmousi-2 model. The results showed that the proposed method separated successfully P- and PS-reflection events from the multicomponent data from mild dipping layered model as long as the dip is not too steep.

Determination of Rock Cleavages Using AMS (Anisotropy of Magnetic Susceptibility): a Case Study on the Geochang Granite Stone, Korea (대자율이방성(AMS) 분석을 통한 석재 결의 파악: 거창 화강석에서의 사례 연구)

  • Cho, Hyeongseong;Kim, Jong-Sun;Kim, Kun-Ki;Kang, Moo-Hwan;Sohn, Young Kwan;Lee, Youn Soo;Jwa, Yong-Joo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.209-231
    • /
    • 2015
  • In granite quarry, stones are generally quarried along easily separating planes called as 'rock cleavage'. Because orientation and characteristics of the rock cleavage are directly involved with easy quarrying, it is the most important factor on selecting a direction of digging. Using AMS (anisotropy of magnetic susceptibility), we attempt to interpret rock fabrics in Geochang Granite Stone (JS, SD, AR, GD, BW, MD quarry) and discuss about determination of rock cleavages and correlation between the rock fabrics and cleavages. Based on mean susceptibility, thermo-susceptibility curves, and hysteresis parameters, Ti-poor MD and/or PSD magnetites are the main contributor to AMS of the granite stones. The systematic magnetic foliations with sub-vertical dip angle are developed in the whole granite quarries. In most of the granite quarries, the magnetic foliations are significantly consistent with grain plane. In the BW quarry, which has higher $P_J$ values than the others, the magnetic foliations coincide exceptionally with rift plane. These results suggest that rock cleavages in granite stone are related to rock fabrics meaning shape and spatial arrangement of crystals. Magnetic fabrics analysis using AMS method, therefore, can be a quantitative and effective tool for determination of rock cleavages in granite quarry.

Study on Analysis for Factors Inducing the Whangryeong Mountain Landslide (황령산 산사태 원인 분석에 대한 연구)

  • 최정찬;백인성
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.137-150
    • /
    • 2002
  • Recently, plane failure mode occurred frequently along the bedding plane having low angle dip about 20 degree when cutting slopes were constructed in sedimentary rock region of the Gyeongsang Basin. Landslide of the Whangryeong Mountain which was occurred at Busan Metropolitan City in 1999 belongs to the category mentioned above. Reconstruction for cutting slope of the Whangryeong Mountain has finished in 2000 and final grade of reconstructed cutting slope is 1:2.0. To analyze slope failure mode for landslide of the Whangryeong Mountain, various analyses were performed such as in-situ investigation and test, drilling, laboratory test, aerial photograph interpretation, X-ray diffraction analysis, and slope stability analysis using Stereographic Projection and Limit Equilibrium methods. As the result, it is identified that tension cracks had been developed one year before the landslide took place. The tension crack semis to be formed by merging several joint sets. It appears that failure blocks broke down along the sliding planes of different layers. Risk of plane failure is conformed as a result of stability analysis using Stereographic Projection and Limit Equilibrium methods in case that greenish gray tuffaceous shales, regared as sliding planes, are weathered. From now on, a detailed investigation is needed for the thin layers which is sensitive to weathering, and stability analysis for this layer is performed at cut slope construction site having similar geological condition.

Weighted Analysis Method for Estimating the Orientation of Limestone Caves in Korea (가중치를 이용한 국내 석회동굴 발달 방향성 해석법 개발에 관한 연구)

  • Lee, Sang-Kyun;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.39-52
    • /
    • 2014
  • Limestone caves that consist of main passages and branches are formed by a variety of processes, and have the characteristic of developing with a preferred orientation controlled by discontinuities such as bedding, joints, and faults around the cave. However, it is difficult to analyze a representative orientation from various orientations. To interpret the overall development orientation of limestone caves, this study proposes new development orientation analysis methods, termed the Average Span Ratio Method (ASRM) and the Individual Development Ratio Method (IDRM), using the weighting of persistence. Nine limestone caves in Korea were randomly selected for testing the new methods. The methods show a stronger development orientation for limestone caves than that obtained by traditional methods, which consider only the distribution of development orientations. Based on an analysis of the relationship between the average span and the dip angle of bedding, it is confirmed that shallowly dipping bedding is a major contributor to the expansion of span in limestone caves. In addition, using scan-line survey data acquired in the field, we perform an RMR analysis of stability of the ground around limestone caves.

Fast Delineation of the Depth to Bedrock using the GRM during the Seismic Refaction Survey in Cheongju Granite Area (굴절법 탄성파탐사 현장에서 GRM을 이용한 청주화강암지역 기반암 깊이의 신속한 추정)

  • Lee, Sun-Joong;Kim, Ji-Soo;Lee, Cheol-Hee;Moon, Yoon-Sup
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.615-623
    • /
    • 2010
  • Seismic refraction survey is a geophysical method that delineates subsurface velocity structure using direct wave and critically refracted wave. The generalized reciprocal method(GRM) is an inversion technique which uses travel-time data from several forward and reverse shots and which can provide the geometry of irregular inclined refractors and structures underlain by hidden layer such as low velocity zone and thin layer. In this study, a simple Excel-GRM routine was tested for fast mapping of the interface between weathering layer and bedrock during the survey, with employing a pair of forward and reverse shots. This routine was proved to control the maximum dip of approximately $30^{\circ}C$ and maximum velocity contrast of 0.6, based on the panel tests in terms of dipping angle and velocity contrast for the two-layer inclined models. In contrast with conventional operation of five to seven shots with sufficient offset distance and indoor data analysis thereafter, this routine was performed in the field shortly after data acquisition. Depth to the bedrock provided by Excel-GRM, during the field survey for Cheongju granite area, correlates well with the elevation of the surface of soft rock from the drill core and SPS logging data. This cost-effective routine developed for quickly delineating the bedrock surface in the field survey will be readily applicable to mapping of weathering zone in narrow zone with small variation of elevation of bedrock.

Geological Structures and Geochemical Uranium Anormal Zone Around the Shinbo Mine, Korea (신보광산 주변지역의 지질구조와 우라늄 지화학 이상대)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • This paper examined the characteristics of ductile and brittle structural elements with detailed mapping by lithofacies classification to clarify the relationship between the geological structure and the geochemical high-grade uranium anormal zone and to provide the basic information on the flow of groundwater in the eastern area of Shinbo mine, Jinan-gun, Jeollabuk-do, Korea. It indicates that this area is mainly composed of Precambrian quartzite, metapelite, metapsammite, which show a zonal distribution of mainly ENE-WSW trend, and age unknown pegmatite and Cretaceous porphyry which intrude them. But the Cretaceous Jinan Group which unconformably covers them, contrary to assumption, could not be observed. The main ductile deformation structures of Precambrian metasedimentary rocks were formed at least through three phases of deformation [ENE striking regional foliation (D1) -> ENE or EW striking crenulation foliation (D2) -> WNW or EW trending open, tight, kink folds (D3)]. The predominant orientation of S1 regional foliation strikes ENE and dips south, being similar to the zonal distribution of Precambrian metasedimentary rocks. Most predominant orientation of high-angled brittle fracture (dip angle ${\geq}45^{\circ}$) [ENE (frequency: 24.3%) > NS (23.9%) > (N)NW (18.8%) > WNW (16.9%) > NE (16.1%) fracture sets in descending frequency order], which is closely related to the flow of groundwater, strikes ENE and dips south. It also agrees with the zonal distribution of metasedimentary rocks and the predominant orientation of S1 regional foliation. The next one strikes NS and dips east or west. Considering the controlling factor of the geochemical uranium anormal zone in the Shinbo mine and its eastern areas from the above structural data. the uranium source rock in these areas might be pegmatite and the geochemical uranium anormal zone in the Sinbo mine area could be formed by an secondary enrichment through the flow of pegmatite aquifer's groundwater into the Sinbo mine area like the previous research's result.

Identification of the Transmissive Fractures in the Vicinity of waterway Tunnel (도수로터널 주변 지역의 지하수 유동성 단열 규명)

  • 이병대;이인호;추창오;함세영;성익환;황세호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.33-44
    • /
    • 2002
  • A field technique for assessing the transmissive fractures in an aquifer was applied to a fractured rock formation in Youngchun area Korea. Geological mapping and detailed acoustic borehole teleview(BHTV) logging were performed to obtain information about the fractures. The study area consists predominantly of two types of fractures. The fracture sets of low angle partings such as bedding and sheeting plains have strike N70-80$^{\circ}$W, 25$^{\circ}$-30$^{\circ}$SW and N3S$^{\circ}$W, 12$^{\circ}$NE, respectively. In areas of high fractures, on the other hand, the major fracture sets show strike N80$^{\circ}$W and dip 70$^{\circ}$-85$^{\circ}$SW, N10$^{\circ}$E.85$^{\circ}$SE in sedimentry rocks, N40-50$^{\circ}$E.85$^{\circ}$SE/85$^{\circ}$NE, N70$^{\circ}$E.80$^{\circ}$SE, and N7$^{\circ}$-75$^{\circ}$W.80$^{\circ}$SW in granites and volcanic rocks. Injection tests have been performed to identify discrete production zones and quantify the vertical distribution of hydraulic conductivity. The calculated hydraulic conductivities range from 3.363E-10 to 2.731E-6, showing that the difference between maximum and minimum value is four order of magnitude. Dominant section in hydraulic conductivity is extensively fractured. Geophysical logging was carried out to clarify characterization of the distribution of fracture zones. Transmissive fractures were evaluated through the comparison of the results obtained by each method. The temperature logs appeared to be a good indicator that can distinguish a high transmissive fractures from a common fractures in hydraulic conductivity. In numerous cases, evidence of fluid movement was amplified in the temperature gradient log. The fracture sets of N70-80$^{\circ}$W.60-85$^{\circ}$NE/SW N75-80$^{\circ}$W.25-30$^{\circ}$SW, N50-64$^{\circ}$W.60-85$^{\circ}$NE, N35-45$^{\circ}$E.65-75$^{\circ}$SE, and N65-72$^{\circ}$E.80$^{\circ}$SE/60$^{\circ}$NW were idenfied as a distinct transmissive fractures through the results of each tests.