• Title/Summary/Keyword: dioxide chlorine water

Search Result 53, Processing Time 0.027 seconds

Analysis of the Contents in Stabilized Chlorine Dioxide (안정화 이산화염소의 성분분석)

  • Shin, Ho-Sang;Oh-Shin, Yun-Suk
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.403-407
    • /
    • 1999
  • A method for detecting chlorine dioxide in drinking water was developed by the modified iodometric titration. This method requires prior removal of interfering chemicals such as chlorine and/or other oxidants: the interferents are removed by $N_2$ purging. Chlorite and chlorate were successfully quantified by the ion chromatography-conductivity detection. Stabilized chlorine dioxide that is commercially available contained only traces of chlorine dioxide (0.01-0.09%). In reality, its main component is chlorite.

  • PDF

Reduction of Microbial Load on Radish (Raphanus sativus L.) Seeds by Aqueous Chlorine Dioxide and Hot Water Treatments (이산화염소수 및 열수처리에 따른 무(Raphanus sativus L.) 새싹 종자의 미생물 제어 효과)

  • Park, Kee-Jai;Lim, Jeong-Ho;Kim, Ji-Hye;Jeong, Jin-Woong;Jo, Jin-Ho;Jeong, Seong-Woong
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.487-491
    • /
    • 2007
  • This study was conducted to investigate the effect of treatment with squeous chlorine dioxide and hot water on the germination of radish (Raphanus sativus L.) seeds, and reduction of microbial load on the seeds. Increases in treatment and the concentration of aqueous chlorine dioxide in water resulted in increasing reductions in the counts of total aerobic microbes. Seeds treated with aqueous chlorine dioxide (100 ppm/20min, 200ppm/20min) showed about a 10-fold decrease in microbial loads. Germination of seeds was not adversely affected by any treatment tested, although the germination rate of seeds in the group treated at $55^{\circ}C$ for 20 min was reduced by 10% compared to that of control. Combined treatment with hot water and aqueous chlorine dioxide yielded better out comes in both microbial reduction and seed germination rate than did single treatments. A combined treatment with 100 ppm aqueous chlorine dioxide and hot water($45^{\circ}C$ or $50^{\circ}C$) resulted in about a 100-fold decrease in microbial load whereas germination rate showed only a slight increase to $97.0{\sim}97.7%$. Total aerobic microbial counts in radish seeds were decreased by aqueous chlorine dioxide and hot water treatment in the order. aqueous $CIO_2$+ hot water > aqueous $CIO_2$ > chlorinated water > hot water > control.

Comparison of Chlorine, Chlorine Dioxide and Ozone as Disinfectants in Drinking Water (정수소독공정에 이용되는 염소, 이산화염소, 오존 소독제의 비교, 고찰에 관한 연구)

  • Lee, Yoon-Jin;Lee, Sun-Jong;Lee, Dong-Chan;Kim, Hyun;Lee, Hwan;Lee, Cheol-Hyo;Nam, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • The experiments for the characterization of inactivation were performed in a series of batch processes with the total coliform as a general indicator organism based on chlorine, chlorine dioxide and ozone as disinfectants. The water sam-ples were taken from the outlet of settling basin in a conventional surface water treatment system that is provided with the raw water drawn from the mid-stream of the Han River. The inactivation of total coliform was experimentally ana-lyzed for the dose of disinfectant contact time, pH, Temperature and DOC. The nearly 2.4,3.0,3.9 log inactivation of total coliform killed by injecting 1 mか1 at 5 minutes for chlorine, chlorine dioxide and ozone. For the inactivation of 99.9%(3 log), Disinfectants required were 1.70, 1.00 and 0.60 mか1 for chlorine, chlorine dioxide and ozone, respec-tively. The higher the pH is, the poorer the disinfections effects are in the range of pH 6-9 by using chlorine and ozone. But the irfluence of pH value on killing effects of chlorine dioxide is weak. The parameters estimated by the models of Chick-Watson, Hom, and Selleck from our experimental data obtained for chlorine are: log(N/ $N_{0}$ )=-0.16 CT with n= 1, log(N/ $N_{0}$ )=-0.71 $C^{0.87}$T with n$\neq$1, for Chicks-Watson model, log (N/ $N_{0}$ )= -1.87 $C^{0.47}$ $T^{0.36}$ for Hom model. For chlorine dioxide are: log(N/ $N_{0}$ )= -1.53 CT with n = 1, log(N/ $N_{0}$ )= -2.29 $C^{0.94}$T with n$\neq$1,, for Chicks-Watson model, log(N/ $N_{0}$ )= -3.64 $C^{0.43}$ $T^{0.24}$ for Hom model and for ozone are: log(N/ $N_{0}$ )= -2.59 CT with n = 1, log(N/ $N_{0}$ )= -2.28 $C^{0.36}$T with n$\neq$1, for Chicks-Watson model, log(N/ $N_{0}$ )= -4.53 $C^{0.26}$ $T^{0.19}$ for Hom model.19/ for Hom model.

Inhibitory Effects of Chlorine Dioxide and a Commercial Chlorine Sanitizer Against Foodborne Pathogens on Lettuce (양상추에 오염된 병원성 미생물에 대한 Chlorine Dioxide 및 상업적 Chlorine 살균소독제의 저해효과 평가)

  • Choi, Mi-Ran;Lee, Sun-Young
    • Korean journal of food and cookery science
    • /
    • v.24 no.4
    • /
    • pp.445-451
    • /
    • 2008
  • This study compared the effects of chlorine dioxide and a commercial chlorine sanitizer for inhibiting foodborne pathogens, including Salmonella enterica serovar Typhimurium, Listeria monocytogenes, and Escherichia coli O157 : H7, on lettuce leaves. The lettuce samples were inoculated with each cocktail of the three strains, and were then treated with chemical sanitizers [distilled water, 100 ppm commercial chlorine and 50 ppm, 100 ppm, 200 ppm chlorine dioxide ($ClO_2$)] for 1 min, 5 min, and 10 min at room temperature($22{\pm}2^{\circ}C$). Following inoculation of the leaves, initial populations of E. coli O157:H7, L. monocytogenes, and S. Typhimurium were approximately 5.54, 4.47, and 5.12 log CFU/g, respectively these levels were not significantly reduced by the treatment with water,whereas the 100 ppm commercial chlorine sanitizer treatment and $ClO_2$ (at all tested concentrations) were effective at reducing levels of all three pathogens. The treatment of 200 ppm $ClO_2$ for 10 min was most effective at inhibiting the three pathogens, and reduction levels of E. coli O157 : H7, L. monocytogenes, and S. Typhimurium were 2.28, 1.95, 1.76 log, respectively. The inhibitory effect of $ClO_2$ increased with increasing treatment concentration of $ClO_2$, but there was no significant difference by the treatment times. When chemically injured cells of E. coli O157 : H7 and L. monocytogenes and S. Typhimurium were examined by SPRAB and selective overlay methods, respectively, it was observed that the commercial chlorine sanitizer generated greater numbers of injured L. monocytogenes than the $ClO_2$ treatment. From the overall results, $ClO_2$ was more effective at inhibiting pathogenic bacteria compared to the commercial chlorine sanitizer therefore, it has potential to be utilized as an alternative sanitizer to increase the microbial safety of fresh produce.

Pulp Bleaching Effect and Ionization Rate of Chlorine Dioxide by Additives and Various pH Conditions(I)-Ionization of ClO$_2$ and Formation of Chlorate in Pulp Bleaching- (pH와 첨가제에 의한 이산화염소의 분해율 및 펄프표백 효과(1)-표백 중에서 이산화염소의 분해와 Chlorate의 생성-)

  • ;Li Jun Wang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 1998
  • Elementally Chlorine Free (ECF) bleaching will be superior than Totally Chlorine free (TCF) bleaching, not only because they have no significant difference in effluent toxicity, but also those pulps bleached by ECF have higher brightness, strength, yield, etc., over those by TCF. With this belief, this paper focused on the chemistry of chlorine dioxide decomposition and ionization, both in water solution and in pulp slurry. Special attention was paid to chlorate ion because there have been controversies as how it is formed and what its behavior to the end pH of pulp bleaching is. As a result, during ionization of chlorine dioxide with water, both chlorate and chlorite were found to increase with increasing pH, but during ionization with pulp, chlorite was found to increase with end pH while chlorate decreased with increasing end pH. In the case of ionization with water, the disproportion equation $2CIO_2 + OH^{-} \lightarrow H_2O + CIO_3^{-} + CIO_2^{-}$ was thought to become the main reaction with the increasing pH, while in the case of ionization with pulp, the reaction $HCIO + CIO_2^{-}\lightarow H^{+} + Cl^{-} + CIO_3^{-}$ was the main reaction contributing to the formation of chlorate. Based on this above opinion, the contrary results of chlorine dioxide ionization from different researchers were discussed and explained.

  • PDF

A Study on the Removal of THM(trihalomethane) (THM(trihalomethane)제거(除去) 대책(對策)에 관(關)한 연구(硏究))

  • Lee, Seok Hun;Hwang, Sun Jin;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.2
    • /
    • pp.34-38
    • /
    • 1993
  • An experimental study was conducted to investigate the effects of chlorine dioxide and ozone on reduction of THM(trihalomethane) formation. Precursor concentration, chlorine concentration, reaction time, pH, and temperature were governing compornents of THM formation. When other conditions are constant, THM formation increased linearly with precursor concentration increased. THM formation increased when pH increased from 5 to 9. In combined treatment with chlorine and chlorine dioxide, chlorine treatment after chlorine dioxide treatment made less THM than any other case does. Ozonation reduced THMFP(THM formation potential) of THM precursor. THMFP decreased exponentially with reaction time increased. Also biodegradability of humic acid was enhanced by ozonation.

  • PDF

Effect of Aqueous Chlorine Dioxide Treatment on the Decomposition of Pesticide Residues (이산화염소수 처리에 의한 잔류농약 분해 효과)

  • Kim, Kyu-Ri;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.5
    • /
    • pp.601-604
    • /
    • 2009
  • This study was conducted to examine the effect of aqueous chlorine dioxide treatment as a washing method on removal of pesticide residues. Three pesticides of chlorpyrifos, diazinon, and metalaxyl, which are commonly used in vegetable crops, were treated with 10, 50, and 100 ppm of aqueous chlorine dioxide and decomposition of the pesticides was determined using gas chromatography. Three pesticides used in this study were decomposed by aqueous chlorine dioxide treatment and removal rate was proportional to treatment time as well as concentration of aqueous chlorine dioxide. In particular, 100 ppm of aqueous chlorine dioxide treatment decreased the pesticides efficiently. In addition, lettuce was treated by dipping in distilled water and 100 ppm aqueous chlorine dioxide, respectively, and was compared regarding removal efficiency of the pesticides. The results revealed that washing with 100 ppm aqueous chlorine dioxide for 10 min was the most effective for removing the pesticides. These results suggest that aqueous chlorine dioxide can be used as a washing method of fresh produce to remove the residual of pesticides.

A Comparative Study on Chlorine and Chlorinedioxide Treatment for Algae Removal Process (조류제거(藻類除去)를 위한 염소(鹽素)와 이산화염소처리(二酸化鹽素處理)의 비교연구(比較研究))

  • Yu, Myong Jin;Sohn, Eun Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.61-69
    • /
    • 1987
  • In water treatment, prechlorination is often carried out to solve the troubles caused by Algae, but produces by-products that are known to be harmfull to human health. In this study, chlorine and chlorine dioxide used for algae removal process were compared in producing trihalomethanes and haloacetonitriles to study the possibilities in using chlorine dioxide as a alternative for chlorine. The raw water used for the study had 10,790 algae cells per one milliliter and Ankistrodesmus sp. were the most common.

  • PDF

Effect of Chlorine Dioxide and Commercial Chlorine Sanitizer on Inhibiting Foodborne Pathogens and on Preventing the Formation of Chemically Injured Cells on Radish Sprouts

  • Choi, Mi-Ran;Kang, Dong-Hyun;Heu, Sung-Gi;Lee, Sun-Young
    • Food Quality and Culture
    • /
    • v.3 no.1
    • /
    • pp.34-39
    • /
    • 2009
  • This study assessed the efficacy of aqueous chlorine dioxide ($ClO_2$) and commercial chlorine sanitizer in terms of its ability to eliminate Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 on radish sprouts (Raphanus sativus L.). Radish sprouts were inoculated with a cocktail containing one each of three strains of three different foodborne pathogens, then treated with distilled water (control) or chemical sanitizers (100 ppm commercial chlorine, and 50, 100, 200 ppm $C1O_2$) for 1, 5, and 10 min at room temperature ($22{\pm}2^{\circ}C$). Populations of S. Typhimurium, E. coli O157:H7 and L. monocytogenes were counted at 4.64, 6.05, and 4.29 log CFU/g, respectively, after inoculation. Treatment with water did not significantly reduce the levels of any of the three foodborne pathogens. The levels of all three pathogens were reduced by treatment with chemical sanitizers; however, the observed levels of reduction of E. coli O157:H7 and L. monocytogenes were not significant as compared with the controls. The levels of the three pathogens were reduced most profoundly when treated for 10 min with 200 ppm of $C1O_2$, and the reduction levels of S. Typhimurium, E. coli O157:H7, and L. monocytogenes were 1.17, 1.63, and 0.96 log CFU/g, respectively. When chemically injured cells were investigated using SPRAB for E. coli O157 :H7 and by selective overlay methods for S. Typhimurium and L. monocytogenes, respectively, it was noted that commercial chlorine sanitizer generated more numbers of injured pathogens than did $C1O_2$. These data indicate that $C1O_2$ treatment may prove useful in reducing the numbers of pathogenic bacteria in radish sprouts.

  • PDF